
Submitted by
Marius-Constantin
Dinu, BSc

Submitted at
Institute for
Machine Learning

Supervisor
Univ.-Prof. Dr.
Sepp Hochreiter

Co-Supervisor
Mag. Dr.
Günter Klambauer

July 2019

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Overcoming
Catastrophic Forgetting
with Context-Dependent
Activations and
Synaptic Stabilization

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

© Copyright 2019 Marius-Constantin Dinu

All Rights Reserved

ii

Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not
used other than the sources indicated, and that all direct and indirect sources are
acknowledged as references. This printed thesis is identical with the electronic version
submitted.

Johannes Kepler University Linz, July 1, 2019

Marius-Constantin Dinu

iii

Contents

Declaration iii

Preface vii

Abstract ix

Kurzfassung x

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Scope . 3
1.4 Target . 3
1.5 Structure . 3

2 Theoretical Foundations 5
2.1 Learning Definitions . 5

2.1.1 Single Task Learning . 6
2.1.2 Multi-Task Learning . 6
2.1.3 Transfer Learning . 6
2.1.4 Fine-Tuning . 6
2.1.5 Continuous Learning . 7
2.1.6 Rehearsal . 8
2.1.7 Pseudo-Rehearsal . 8
2.1.8 Reduced Representational Overlap 8
2.1.9 Overcoming Catastrophic Forgetting 8

2.2 Learning Approaches . 9
2.2.1 Supervised Learning . 9
2.2.2 Reinforcement Learning . 10

2.3 Deep Learning Concepts . 13
2.3.1 Fully Connected Layers . 14
2.3.2 Activation Functions . 16
2.3.3 Convolutional Layers . 20
2.3.4 Batch Normalization . 21
2.3.5 Layer Normalization . 22
2.3.6 Dropout . 22

iv

Contents v

2.3.7 Embedding . 23
2.3.8 Attention . 23

2.4 Architectures . 23
2.4.1 AlexNet . 24

2.5 Datasets . 24
2.5.1 CIFAR-10 . 25
2.5.2 CIFAR-100 . 25

3 Related Work 27
3.1 Progressive Neural Networks . 27
3.2 Elastic Weight Consolidation . 29
3.3 Less-Forgetting Learning . 30
3.4 Learning Without Forgetting . 32
3.5 Incremental Moment Matching . 33

3.5.1 Matching Posterior Distributions 33
3.5.2 Mean-based IMM . 34
3.5.3 Mode-based IMM . 35
3.5.4 Transfer Techniques . 36

3.6 PathNet . 37
3.6.1 Modules . 37

3.7 PackNet . 38
3.7.1 Pruning Procedure . 39
3.7.2 Inference . 39

3.8 Hard Attention to the Task . 39
3.8.1 Embedding Gradient Compensation 40
3.8.2 Promoting Low Capacity . 41

3.9 Synaptic Intelligence . 42
3.10 Context-Dependent Gating . 44

4 Comparison 46
4.0.1 Forgetting Ratio . 47
4.0.2 Analysis . 47

5 Context-Dependent Activations 52
5.1 Concept . 52
5.2 Context-Dependent Activations . 53
5.3 Activation Threshold . 53
5.4 Regularization . 55

5.4.1 Memory Footprint . 57
5.5 Self-Task Prediction . 58

5.5.1 Absolute Difference . 58
5.5.2 Cosine Similarity . 58
5.5.3 Runtime Complexity . 58

5.6 Activation Normalization . 58

6 Experiments 62
6.1 Setup . 62

Contents vi

6.2 Baseline . 63
6.2.1 Method Comparison . 63
6.2.2 HAT Capacity Exhaustion . 65
6.2.3 HAT Weights Unfreezing . 65

6.3 Task Self-Prediction . 68
6.4 Class Activation Maps . 75

7 Conclusion 76
7.1 Summary . 76
7.2 Future Work . 76

7.2.1 Long Sequence Experiments . 76
7.2.2 Improving the Similarity Metric 77
7.2.3 Reduce Activation Overlap . 77
7.2.4 Hierarchical Context Selection 77
7.2.5 Reinforcement Learning Application 77
7.2.6 Dynamic Memory Allocation . 77

References 78
Literature . 78
Online sources . 83

Preface

Nowadays, the subject of Artificial Intelligence (AI) belongs to one of the most promi-
nent topics of discussion. Its presence is ubiquitous, stretching from self-driving cars from
Uber, to recommendation systems at Amazon and cutting edge research by DeepMind—
solving complex combinatorial tasks, such as in popular computer game StarCraft II.
AI has a huge impact on society and reshaped all industries. My passion to research
this field emerged during my bachelor’s and grew ever since. I continue my work and
contribute as hard as I can to help realize what I believe will be humanity’s greatest
invention, Artificial General Intelligence (AGI).

We have a long way to go until we are able to create self-conscious machines. Some
experts even argue that this is not possible, that consciousness is unique to humans. I
disagree with these claims, and do not see any physical barriers hindering us from solv-
ing AGI. Maybe our ability to quantify intelligence and consciousness has to mature
or humanity has to accept that consciousness is often used as an excuse to separate us
from our novel evolutionary trails. If we redefine the behavioral formalism of intelligent
beings, maybe we can also improve the objectives of AGI. The behavioral formalism
of agents interacting with an environment was already addressed by Legg and Hutter,
2007, and dates further back to another popular machine learning sub-field, known as
Reinforcement Learning (Sutton and Barto, 2017). Advances in Deep Reinforcement
Learning yielded the development of AlphaGo (Silver et al., 2016), a software that is
adapted in the ancient game of Go (Moyer, 2016). Go is believed to be one of the most
difficult games available according to its huge state space which also rules out hand-
crafted solutions. AlphaGo went as far as winning against Lee Sedol, a world renowned
master of the game. The most interesting part of the software is that its success was
not a result of brute forcing the problem, but rather through the ability to learn and
develop its own intuition about the game while playing against itself.

Needless to say, such achievements are not only accountable to individuals. It is
the collaborative work of many researchers, engineers and visionaries which dedicated
many years of small incremental improvements. This urges me to offer my gratitude to
all the people who inspired and supported me over the last years. First, I like to thank
my parents and beloved partner, Laura Neumayer. They gave me the time and freedom
I needed to delve into my research and encourage me whenever possible. Second, I
thank my friends, who stood by my side although I was seldom available and helped
me out when I needed them most. I am also grateful to my boss Rene Loitzenbauer at
CELUM GmbH for supporting me with flexible work schedules and inspiring projects.
Great thanks also to Daniel Glaser for his constructive feedback and helpful hints in
the finishing phase. Special thanks also to my co-supervisor Günter Klambauer, who

vii

Preface viii

supported me throughout this project. He allowed me to explore my craziest ideas and
guided me to a successful outcome. I also offer my gratitude to all my professors and
colleagues, who inspired me during my studies and for the amazing conversations we
had after classes. Last but not least, great thanks to my teacher José Arjona Medina.
The valuable talks we had ignited the thoughts to the solution presented in this thesis.

Abstract

Overcoming Catastrophic Forgetting in neural networks is crucial to solving continuous
learning problems. Deep Reinforcement Learning uses neural networks to make predic-
tions of actions according to the current state space of an environment. In a dynamic
environment, robust and adaptive life-long learning algorithms mark the cornerstone
of their success. In this thesis we will examine an elaborate subset of algorithms coun-
tering catastrophic forgetting in neural networks and reflect on their weaknesses and
strengths. Furthermore, we present an enhanced alternative to promising synaptic sta-
bilization methods, such as Elastic Weight Consolidation or Synaptic Intelligence. Our
method uses context-based information to switch between different pathways throughout
the neural network, reducing destructive activation interference during the forward pass
and destructive weight updates during the backward pass. We call this method Context-
Dependent Activations (XdA). We show that XdA enhanced methods outperform basic
synaptic stabilization methods and are a better choice for long task sequences.

ix

Kurzfassung

Als Catastrophic Forgetting im Kontext von Deep Learning bezeichnet man das Phä-
nomen eines sequentiellen Optimierungsvorgangs, welches sich perfekt an die Spezifika
des aktuellen Problems anpassen kann, jedoch vergangene Ereignisse vergisst bzw. über-
schreibt. Deep Reinforcement Learning verwendet neuronale Netze, um Vorhersagen von
Aktionen entsprechend dem aktuellen Zustandsraum einer Umgebung zu treffen. In ei-
nem dynamischen Umfeld markieren robuste und adaptive Algorithmen für lebenslanges
Lernen die Eckpfeiler ihres Erfolgs. In dieser Arbeit werden wir eine ausführliche Un-
tergruppe von Algorithmen vorstellen, die dem katastrophalen Vergessen in neuronalen
Netzen entgegenwirken und deren Schwächen und Stärken reflektieren. Darüber hinaus
stellen wir eine verbesserte Alternative zu vielversprechenden Methoden zur synapti-
schen Stabilisierung wie Elastic Weight Consolidation oder Synaptic Intelligence vor.
Unsere Methode verwendet kontextbasierte Informationen, um zwischen verschiedenen
Pfaden im gesamten neuronalen Netzwerk zu wechseln. Dadurch werden destruktive Ak-
tivierungsstörungen während des Vorwärtsdurchlaufs und destruktive Gewichtsaktuali-
sierungen während des Rückwärtsdurchlaufs reduziert. Wir bezeichnen diese Methode
Context-Dependent Activations (XdA). Wir zeigen, dass XdA-Erweiterte Methoden die
grundlegenden synaptischen Stabilisierungsmethoden übertreffen und eine bessere Wahl
für lange Tasksequenzen darstellen.

x

Chapter 1

Introduction

“A computer would deserve to be
called intelligent if it could deceive a
human into believing that it was
human.“

Alan Turing

1.1 Background
The strive for creating intelligent machines dates back to the Renaissance, starting with
the first designs of steam-based engines, followed by automation up until the early days
of the first programmable digital computers in 1940. McCorduck’s book “Machines Who
Think” (McCorduck, 1979) first published in 1979 already offered some insights into the
prospects of AI. It took a few more decades until the widespread adoption of modern
machine learning to start to revolutionize the industry. Nowadays, researchers worldwide
from different fields of research commit themselves to solving the puzzle of the human
brain and have been trying to design our first artificial counterpart. Thanks to the
algorithmic breakthroughs from backpropagation of the first multi-layered connectionist
models by Werbos, 1975, to the advances in modern day’s Deep Learning architectures,
we gradually set the stepping stones for creating the first Artificial General Intelligence
(AGI).

1.2 Motivation
There are three major steps we need to accomplish to advance AGI. First, we need
to improve the ability of life-long learning. Artificial Neural Networks (ANN) need to
be more dynamically adaptable and expandable while still remaining stable to previous
information. The Google DeepMind team proposed the Neural Touring Machines (NTM)
(Graves, Wayne, and Danihelka, 2014) to improve life-long learning by reading and
writing activations to external memory. However in practice, the applicability is still
very limited.

1

1. Introduction 2

Secondly, we need to include temporal aspects to the core of our architectures,
where the state dynamics remain stable over long time sequences. Long-Short Term
Memory (LSTM) by Hochreiter and Schmidhuber, 1997 and Gaten Recurrent Units
(GRU) by Chung et al., 2014 are advocates of such temporal approaches, yet the is-
sues with these approaches rely within the stability of their hidden state. It has been
shown by Merity, Keskar, and Socher, 2017 that simple regularization approaches, such
as Dropout—which are effective in the context of fully connected or convolutional net-
work structures—disrupt the ability of a long term memory, requiring more elaborate
alternatives. We need to encode features in a continual and sequential manner, with
stable internal state representations.

Third, we propose to shift the focus from encoding task-specific information into
the weight space towards the activation space. Using this approach, the weight space
only operates as an encoding and decoding entity of activation space. Currently, the
most efficient way to train a well performing model is by iterating over a large amount
of data multiple times until the model converges. The trained statistical representa-
tion then offers reasonable inference performance on all samples with the assumption
that they are originating from the same distribution. However, the dynamics of the
input space can drastically change by altering the task objective or extending the ob-
jective. Backpropagation lacks dynamic adaptiveness, requiring a more elaborate notion
of persisting and retrieving activation encodings. The answer may rely within handling
context-dependent activations, which are either allocated and retrieved from an external
memory system, or switched during the training or testing phase. This slightly shifts the
training objective from matching input to output classes, towards activation-dependent
training units. We then try to avoid the encoding of domain specifics within the neural
network weights but within a dynamically changing context.

The combination of all three ideas would result in a dynamically extensible, and
adaptive system, capable of learning with few samples and preserving information over
long periods of time. As an analogy, we can reflect on the architecture of general purpose
computers. Computers use Random Access Memory (RAM) to execute program specific
code without hardwiring data into its system, by dynamically operating on the memory
state with no persistence. The hardware design offers only an operational set and does
not restrict or embed any domain specific information during runtime. In case of neural
networks, by manipulating the activation space we also saw promising results with One-
Shot Learning approaches, as proposed by Kaiser et al. in Learning to Remember Rare
Events (Kaiser et al., 2017). They combined LSTMs with a nearest neighbor based
memory module, and showed that they can improve the performance on multiple tasks
and learn from rare occurring samples, although this thesis shifts its focus on the aspect
of improving life-long learning of neural networks with the usage of context-dependent
activations.

The bottom line 1.2.1 If we want to advance in AGI we need to improve training
methods to store and recall learned patterns. By operating on the activation space we
can train more flexible models that adapt dynamically and require less data. Solving
the continuous learning problem will also reduce repetitive learning of tasks and
advance the AI field. Improving the life-long learning capability of models extends
to all fields of machine learning, such as reinforcement learning.

1. Introduction 3

1.3 Scope

Serrà et al., 2018, presented in their paper Hard Attention to the Task (HAT) a task-
based attention algorithm that preserves previously learned information and minimally
constrains the learning of the current task. Additionally, they compare multiple methods
for avoiding catastrophic forgetting and analyzed the effectiveness of masking activa-
tions based on embeddings based hard attention. While learning new tasks in a sequen-
tial manner, they gradually freeze weights to preserve information of previous tasks.
To avoid fast saturation of the network capacity they use an effective regularization
for compression. Although this method works very effectively, it is restricted in usage
by pre-requiring knowledge about the task context to select the correct hard attention
mask. Also freezing weights is not practical for larger scales of tasks. In contrast, Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Synaptic Intelligence (SI)
(Zenke, Poole, and Ganguli, 2017) consolidate weights to a common subspace, which
allows continuous learning due to neural plasticity, but aggressively restricts the task
adaptiveness and reduces the overall performance of the model. The scope of this thesis
is to analyze existing methods of avoiding catastrophic forgetting and propose improve-
ments for synaptic stabilization methods. Throughout this work, we will use synapses
and weights interchangeably. The proposed method is operating on the activation space
by defining the corresponding context and is practical for online and continuous learning
problems. We also perform in-depth analysis and comparing the obtained results with
the original HAT, which currently marks the state-of-the-art in overcoming catastrophic
forgetting. This thesis concludes with insights and key aspects for continuous learning
and proposes an outlook for future work.

1.4 Target
This thesis targets intermediate to experienced machine learning developers and re-
searches. The reader should have some knowledge of machine learning and basic deep
learning concepts.

1.5 Structure

The structure of this thesis follows a common approach. The first chapter (2) defines the
theoretical foundation of modern neural networks and introduces related topics, such
as multi-task learning, continuous learning, transfer learning, etc. and defines general
training methods. It will also provide a theoretical discourse, where continuous learn-
ing plays an essential role, such as in supervised and reinforcement learning problems.
Additionally, some of the most important concepts for modern deep learning will be
introduced and which will be used throughout this work. The chapter closes with the
introduction of the architectural design and used datasets for testing and evaluating
the models. Chapter 3 presents the related work to catastrophic forgetting and sum-
marizes the proposed solutions. In chapter 4 we then reflect on different aspects of the
proposed methods and give some insights on the results obtained from the literature.
The subsequent chapter 5 presents an improvement for synaptic stabilization methods,

1. Introduction 4

denoted as Context-Dependent Activations (XdA), which is based on ideas from the
Context-Dependent Gating (XdG) (Masse, Grant, and Freedman, 2018), Elastic Weights
Consolidation and Synaptic Intelligence. Additionally, we also empirically evaluate the
training behavior and provide some insights on converges. Chapter 6 summarizes the
results reconstructed from the original HAT paper and compares the different methods
with in depth focus on Context-Dependent Activations 5. The last chapter (7) reflects
upon this work and offers some future outlook for improvements and steps to take to
reduce catastrophic forgetting and improve continuous learning.

Chapter 2

Theoretical Foundations

“Truth is ever to be found in
simplicity, and not in the multiplicity
and confusion of things.“

Isaac Newton

This chapter will focus on the terminology and related concepts of catastrophic
forgetting, modern Deep Neural Networks (DNN) and the core building blocks requires
for the subsequent chapters. All sections are self-contained and can be skipped, if the
basic concepts are already understood.

2.1 Learning Definitions
The term catastrophic forgetting or catastrophic interference was first coined by Mc-
Closkey and Cohen, 1989, and refers to the issue that simplistic connectionist neural
network models were not designed for learning tasks sequentially. A connectionist model
refers to models with focus on the weighted connections between nodes, without includ-
ing contextual meaning while learning a task. The lack of context, makes such models
innate to learn new data without forgetting previously learned information. A majority
of research focus on optimizing models to become more sensitive to but not disrupted
by new data. The main approaches are to switch between context-dependent subsets of
weights or to regularize the objective function to enable the consolidation of weights.
The first approach mainly uses freezing of weights and compression techniques to sta-
bilize them while the latter converges the weights to a common sub-space during a
sequential training procedure.

To frame a more complete view of the training dynamics we differentiate between
three concepts of overcoming catastrophic forgetting: rehearsal, pseudo-rehearsal, and
reduced representational overlap (Robins, 1995). These concepts are independent to the
machine learning method, such as supervised, unsupervised or reinforcement learning,
and describe how a solution is obtained with respect to data handling or regularization
of the training procedures. This thesis mainly focuses on the reduced representational
overlap to define a continuous learning method.

5

2. Theoretical Foundations 6

2.1.1 Single Task Learning
To ensure a common terminology this work will refer to learning a task 𝑡, as solving a
minimization problem by reducing an evaluated error between a predictive value 𝑦 and
the actual value 𝑦, where 𝑦 is obtained by forwarding a set of training samples 𝑋 to a
neural network, where (𝑋, 𝑦) ∈ 𝒟𝑡 and the dataset 𝒟𝑡 can be subject to one or more
classes 𝐶 = 1 . . . 𝑁 . Unless stated differently, each class is refereed to as an one-hot
encoded representation of mutually excluding class references.

2.1.2 Multi-Task Learning
Multi-task learning in neural networks aims to optimize multiple objectives or tasks
at the same time, in contrast to optimizing a single task. The advantage of learning
on multiple tasks is that the complementary tasks can improve together, meaning that
solving task 𝐵 can also improve or guide the solution for task 𝐴 as demonstrated
by Ruder in “An Overview of Multi-Task Learning in Deep Neural Networks” (Ruder,
2017). In the context of this thesis, the output layers are similar to a multi-task learning
problem, assigning each task its own head or set of parameters. When optimizing we will
switch between the tasks in a sequential manner and the corresponding output head.
All other parameters are either shared or manipulated as in the papers described.

2.1.3 Transfer Learning
Transfer learning is the notion of reusing a pre-trained neural network model, which
was optimized on some particular task, and is redefined to fit a new task. In this case,
the weights of a pre-trained model are kept frozen and only the classification layer at
the top of the network is exchanged and trained on the new task. This approach is very
popular for image recognition problems based on convolutional neural networks (CNN)
as described in section 2.3.3, because the CNN layers mainly function as translation
invariant feature extractors (Wiatowski and Bölcskei, 2015) and the top layer is in many
cases a fully connected classification layer. When switching the task-specific classifier,
the weights are immune to catastrophic forgetting since they are never altered. The
critical point is that not all tasks emerge from the same distribution and the reuse of
pre-trained feature extractors shows limiting performance compared to re-training from
scratch. But it still is intensively used, because training networks from scratch requires
a very large amount of data, which is often not available.

2.1.4 Fine-Tuning
Fine-Tuning is similar to transfer learning, except that we do not freeze all feature
extraction layers. We reuses already well-generalized feature extractors and allow minor
weight alternations to gradually adjust the new task objective. This usually adds the cost
of becoming incompatible with the original classifier or reducing its original performance.
This method is widely used, because it is more efficient to alter pre-trained weights,
instead of training the entire network from scratch, which may not only take days, but
also requires a large amount of data to properly generalize. In the context of overcoming
catastrophic forgetting this approach was often used with an additional L2 regularization

2. Theoretical Foundations 7

term to avoid large updates. L2 regularization does not assess the importance the task-
specific weights and usually shows drastic performance drops in previously trained tasks.
Less-Forgetting Learning 3.3 and Learning Without Forgetting 3.4 from the related work
chapter 3 are based on fine-tuning techniques with L2 regularization of weights and the
task specific objectives.

2.1.5 Continuous Learning
Continuous learning or continual life-long learning in the context of machine learning
defines a set of algorithms that enable online sequential learning. After learning 𝑁 tasks
𝒯1, 𝒯2, . . . , 𝒯𝑁 on 𝑁 datasets 𝒟1,𝒟2, . . . ,𝒟𝑁 , which can be of different types or domains,
and are now confronted with task 𝒯𝑁+1 of the dataset 𝒟𝑁+1, the algorithm can optimize
itself towards the new objective without compromising the performance on previously
learned tasks. Such an algorithm must learn general features that are valid across all
tasks and reuse them while training on new tasks (Chen and B. Liu, 2016). In Figure
2.1 we provide an illustration of the life-long learning cycle. The evaluation of LML

Figure 2.1: Life-long learning schematics. The knowledge-based learner has to retain its
knowledge base over time and can query it for solving new tasks. If new information is
provided it requires to store its newly gained knowledge to the knowledge base without
disrupting previous entities (Chen and B. Liu, 2016).

algorithms is different compared to statically pre-defined task-based methods, since
we need to evaluate not only on the current task, but also on all previously learned
tasks. Chapter 6 will introduce a metric proposed by Serrà et al., 2018, to evaluate
the performance of algorithms that are trained in a sequential manner, measuring the
average precision drop on previous tasks and the capability to adopt new task-specific
features.

2. Theoretical Foundations 8

2.1.6 Rehearsal
Learning approaches categorized as rehearsal refer to the accumulation of information
and requires all requested tasks. If new information is provided, we need to train a new
model reusing the entire collection of data. Such an approach is not only very inefficient,
but also quickly exceeds capacity limitations due to restricted computational power and
memory—but it remains the most performing way to train top notch neural networks.
This method will be used to define our best achievable performance, when evaluating
the models.

2.1.7 Pseudo-Rehearsal
Pseudo-rehearsal refers to a data processing approach that has no permanent access to
the entire task set, but trains on a generative representation resembling the original data
distribution. Transfer learning is an example of this category. Furthermore, fine-tuning
a pre-trained model with small learning rates represents a relaxed form of a pseudo-
rehearsal approach. In fact, such approaches can be stated as memory-free, because
their training process can be applied in an online learning environment.

2.1.8 Reduced Representational Overlap
This approach focuses on applying structural regularization to the input, intermediate
and/or output layers of neural networks (French, 1991). By controlling the weight up-
dates we can control how much influence the new data has upon the existing model.
The main objective is the efficient distribution of information across the network as
well as usage of the full capacity of the network. The most difficult part is to steer the
training process to retain important information and only readjust irrelevant weights.
This approach is the main focus of this thesis.

2.1.9 Overcoming Catastrophic Forgetting
Alleviating catastrophic forgetting in neural networks can be practically tackled in three
major ways:

• Architectural regularization
• Functional regularization
• Structural regularization

Architectural

An architectural method is defined as the reduction of interference without changing
the objective function. Freezing weights, using low learning rates or injecting noise via
Dropout 2.3.6 can be seen as such regulatory improvements (Zenke, Poole, and Ganguli,
2017).

Functional

Functional approaches try to maintain the input to output mapping by adding a regular-
ization term to the objective function. This method requires the tracking of activations

2. Theoretical Foundations 9

before and after an update and corrects for the computed deviations.

Structural

On a structural level, we can add a penalization term at the parameter level and en-
force them to stay close to representations of old tasks. By avoiding large updates and,
therefore, restricting weight changes we try to find a representation that performs well
on multiple tasks. Elastic Weight Consolidation 3.2 and Synaptic Intelligence 3.9 are
examples of such approaches.

2.2 Learning Approaches
The learning approach defines how an algorithm is applied to solve a particular prob-
lem. The algorithm is either instructed with the correct labels, it builds its own in-
ternal clusters or is indirectly rewarded for positive behavior over time periods. The
three approaches are known as supervised, unsupervised or reinforcement learning re-
spectively. The concepts for controlling the learning process is denoted as rehearsal,
pseudo-rehearsal or reduced representational overlap and can be applied to all three
learning approaches. All these topics are equally important to solve AGI, but in this
thesis, we will mainly focus on the supervised learning approach, and provide a brief
referential description of reinforcement learning since it represents the approach which
benefits mostly alleviating catastrophic forgetting and enabling continuous learning.

2.2.1 Supervised Learning
For each input data we have our target output value, whereas the goal is to identify
the relationship between input and output. This is also known as predictive modeling,
due to the goal to generalize towards the training samples and predict the output value
of unseen samples. Given a set of 𝑁 training samples {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)}, whereas
𝑥𝑖 defines the feature vector at the 𝑖-th position and 𝑦𝑖 the corresponding label, we try
to learn a function 𝑔 : 𝑋 → 𝑌 , where 𝑋 is the input space and 𝑌 the output space
(Wikipedia, 2019b). Our goal is to find an unbiased estimator 𝑅emp of the generalization
error 𝑅, such that

𝑅emp(𝑔(.; 𝑤), 𝑍𝑚) = 1
𝑚

𝑚∑︁
𝑗=1

𝐿(𝑦𝑙+𝑗 , 𝑔(𝑥𝑙+𝑗 ; 𝑤)), (2.1)

whereas 𝑙 defines the size of the training set, 𝑚 the size of a i.i.d. test set 𝑍𝑚 =
(𝑧𝑙+1, . . . , 𝑧𝑙+𝑚), 𝑤 the parameters to optimize and 𝐿 the loss function. By minimizing
the loss 𝐿 w.r.t. 𝑤 we are able resemble the generalization error 𝑅 and perform better
on future unseen samples.

In the context of a fully connected ANN we can define 𝑔 to be a (multi-layered)
approximation function

𝑔 : 𝑓(𝑋; 𝑊) = 𝑓𝑗=𝐻(. . . , 𝑓𝑗=1(
𝑘𝑗∑︁

𝑖=1,𝑗

𝜎(𝑥𝑖,𝑗𝑤𝑖,𝑗 + 𝑏𝑗))), (2.2)

2. Theoretical Foundations 10

Figure 2.2: Reinforcement learning agent-environment interactions (Sutton and Barto,
2017). The agent can select actions according to the state of the environment and receives
the next state and a reward for the state transition.

whereas 𝜎 denotes the applied activation function, 𝑓𝑗 the current layer function, 𝑖 the
current neuron or unit at layer 𝑗, 𝑘 the number of units at layer 𝑗, 𝑏 the bias for each layer
and 𝐻 the maximum number of layers (Kojouharov, 2017). We also try to find an input
to output mapping by adjusting the weight matrix 𝑊 according to the backpropagated
losses (see section 2.3.1), which are obtained by comparing the predictions with the
actual labels, evaluated by the selected cost metric.

2.2.2 Reinforcement Learning
Richard Sutton’s first publication in 1998 set of a revolution of how people thought
about approaching machine learning problems (Sutton and Barto, 2017). Instead of ac-
tively instructing an algorithm with labeled information—requiring hours of hard work
labeling of datasets—an agent is defined which explores its environment by performing
different actions and is progressively rewarded when making proper decisions. The ad-
vantage of this approach is that we are mapping situations to actions, by maximizing
the received reward, without having to tell the agent which exact actions it has to take.
The advantage of not pre-labeling the data, helps to solve problems which were not
approachable using supervised learning. This shifts the focus to a new issue, known
as the exploration versus exploitation trade-off, which requires the algorithm to choose
between reusing already promising solutions and finding new unknown pathways. The
received reward can be delayed over longer time periods, which increases the difficulty
of converges or causes the algorithm to get stuck in a local minimum. Although, with
the right configurations and adjustments this machine learning approach opens a huge
field of possibilities.

Reinforcement learning basically consists of four main elements, a policy, a reward
signal, a value function, and optionally a model of the environment. In Figure 2.2 we
provide an overview of the interactions of the main elements of reinforcement learn-
ing. In the subsequent sections we will explain the terminology and introduce some
reinforcement learning methods.

Policy

Given an environmental state 𝑠𝑡, an agent can place actions 𝑎 to move to a next state
𝑠𝑡+1 of the environment, where 𝑡 denotes the current timestep. The agent accomplishes

2. Theoretical Foundations 11

this by following its learned policy 𝜋, which basically maps perceived states to actions.
It is also noticeable that states can be stochastic, meaning that the selected action does
not lead to a deterministic next state. Reinforcement Learning methods basically split
into two categories, denoted as on-policy and off-policy, where the off-policy methods
let the agent learn from historical data and does not follow directly the current scheme.
It is also important to state that the policies are usually approximated by universal
function approximators, such as a neural networks, since computing exact solutions for
large state and action spaces becomes unfeasible.

Reward Signal

The reward signal 𝑟𝑡 is received from the environment and provides the agent with
additional information about the quality of its chosen action 𝑎 given state 𝑠. The main
objective of an RL algorithm is to maximize the total possible reward 𝐺𝑡 obtained on the
long run and intermediate rewards act as a guidance throughout the decision process.
Rewarding signals can also be stochastic functions based on the environmental state
and the action taken.

Model

In some reinforcement learning methods, the behavior of the environment is learned
and represented through a model. Model-based methods encode the environment to
help a system to make predictions into the future. In contrast, model-free methods are
simple trial-and-error learners, without tracking long term implications of their changing
environment.

Value Function

The value function 𝑣𝜋 can be defined as the most important element in reinforcement
learning. The reward signal 𝑟𝑡 defines the immediate positiveness or negativeness of
an action taken in a state 𝑠𝑡, the value function 𝑣𝜋 estimates how well an agent will
perform on the long run according to its current policy 𝜋. By following the path of the
highest immediate reward it is not guaranteed that the maximum achievable reward
can be obtained. In fact, following temporarily the worst path can lead to a better total
future reward or even to the optimal outcome. For non-trivial problems the value func-
tion cannot simply be computed and has to be estimated over the entire state-actions
sequences. To enable a decomposed state-action update sequence the American math-
ematician Richard Bellman proposed the so-called “Bellman equation of optimality”,
which allows to approach the optimal achievable reward through through discounted in-
termediate rewards. More formally speaking, for a non-deterministic environment with
a given Markov Decision Process (MDP) the state-value function equals the immediate
reward plus the expected discounted total reward of future states:

𝑉 (𝑠) = E𝜋 [𝐺𝑡 | 𝑆𝑡 = 𝑠] (2.3)
= E [𝑅𝑡+1 + 𝛾𝐺𝑡+1 | 𝑆𝑡 = 𝑠] . (2.4)

2. Theoretical Foundations 12

And for an episodic evaluation of the state-value function starting at 𝑣0 the agent selects
the action 𝑎 which maximizes the total discounted future reward

𝑣0 = max
𝑎∈𝐴

E𝑠∼𝑆

[︀
𝑟𝑠,𝑎 + 𝛾𝑣𝑠

]︀
. (2.5)

Recursively repeating the state-value function and considering the Bellman optimality
equation with an discrete action space according to a policy 𝜋, we receive

𝑣𝜋(𝑠) =
∑︁

𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠

′
,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
[︀
𝑟 + 𝛾𝑣𝜋(𝑠′)

]︀
, for all 𝑠 ∈ 𝑆, (2.6)

where 𝑠′ denotes the next state, 𝑝(𝑠′, 𝑟|𝑠, 𝑎) the probability of transitioning to that state
when taking the action 𝑎 in state 𝑠 and 𝛾 the discount factor. Allowing us to optimize
our policy by selecting the actions which maximize the total discounted reward.

Q-Learning

Q-Learning shifts the focus from the state-value function towards the action-value
function 𝑞(𝑠, 𝑎), which in practice defines a better quantity when assessing the dis-
counted future reward of a state. It can be derived from the state-value function as
𝑞𝑠,𝑎 = E𝑠

′∈𝑆

[︀
𝑟𝑠,𝑎 + 𝛾𝑣𝑠

′
]︀
. The main difference to the state-value function is that we use

a state-action pair to obtain the discounted future reward and don’t have to compute
the state-value function for each state, since we can derive it from the action-value
function as 𝑣𝑠 = max𝑎∈𝐴 𝑞𝑠,𝑎. For an finite Markov Decision Process (MDP) finding the
optimal policy 𝜋* means that we choose actions based on our policy given the current
state 𝑠 to maximize towards the optimal state-value function 𝑣*(𝑠) = max𝜋 𝑣𝜋(𝑠), and
by transitioning this to the optimal action-value function 𝑞*, we can define the expected
reward of a state based on the action-value function analogously:

𝑄*(𝑠, 𝑎) = E𝜋 [𝑅𝑡+1 + 𝛾𝑉*(𝑠𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] , (2.7)

where the Bellman optimality equation can be applied recursively and is defined as

𝑞*(𝑠, 𝑎) =
∑︁
𝑠

′
,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)
[︂
𝑟 + 𝛾 max

𝑎
′

𝑞*(𝑠′, 𝑎′)
]︂

. (2.8)

This method works extremely well for smaller state and action spaces, but for very
long episodes, where the reward is only received in an defined outcome at the end of a
sequence, the following approaches are proposed.

Temporal-Difference Learning

One of the central aspects of reinforcement learning is temporal-difference (TD) learning,
which combines concepts from Monte Carlo with dynamic programming. The core idea
is that we need to find an algorithm that can update our action-value function 𝑞𝜋(𝑠, 𝑎),
which determines the policy 𝜋, in an online manner. In contrast to Monte Carlo we
do not compute an entire sequence until the end of an episode to correct for estimated
values, because in practice we do not know the required sequence length and in theory it

2. Theoretical Foundations 13

Algorithm 2.1: Q-Learning (off-policy TD control) for estimating 𝜋 ≈ 𝜋* (Sutton and
Barto, 2017).

Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠), 𝑄(𝑠0, .) = 0
Loop for each episode:

Initialize 𝑆
Loop for each step of episode:
Chose 𝐴 from 𝑆 using policy derived from 𝑄

Take action 𝐴, observe 𝐴, 𝑆′

𝑄(𝑆𝑡, 𝐴𝑡)← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 max𝑎 𝑄(𝑆𝑡+1, 𝑎)−𝑄(𝑆𝑡, 𝐴𝑡)]
𝑆 ← 𝑆′

until 𝑆 is terminal

might contain an infinite amount of episodes. The alternative is to make small steps in
one direction and backtrack false expectations, which might result in random or noisy
behavior on local scales but on global scales convergences towards the optimal action-
value function 𝑞*. The update for the action-value function focuses on the differences
between time steps and can be described as

𝑄(𝑆𝑡, 𝐴𝑡)← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1)−𝑄(𝑆𝑡, 𝐴𝑡)] , (2.9)

where 𝛼 denotes the learning rate in which we only make small correcting steps during
the state transitions. One variation of TD-Learning is shown in equation 2.9 and is
known as Sarsa On-Policy TD Control, since it uses every element from the state-
action pair of the (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1) events. In practice, we continuously estimate
the action-value function 𝑞𝜋(𝑠, 𝑎) for the policy 𝜋 and at the same time greedily alter 𝜋
to follow 𝑞𝜋. One of the milestones in reinforcement learning was to find an formalism to
directly approximate 𝑞*, by using an off-policy method, which is not directly following
the policy 𝜋. The policy still has an effect by defining which action-value pairs are visited
and updated, however it simplifies equation 2.9 to

𝑄(𝑆𝑡, 𝐴𝑡)← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼
[︁
𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎)−𝑄(𝑆𝑡, 𝐴𝑡)

]︁
, (2.10)

and still guarantees convergence. This is known as Q-Learning and the pseudo-code
for the algorithm is shown in Listing 2.1. Several improvements have also emerged for
Q-Learning methods, such as Double Q-Learning or by using bootstrapping techniques
or Actor-Critic systems. The details go far beyond the scope of this work, but for
completeness in terms of continuous learning, it is important to state, that policy and
value functions can be learned by using neural networks. For instance, in an Actor-Critic
setup the actor learns the policy for taking actions in a given state and the critic learns
to evaluate the policy currently followed and criticizes the chosen actions of the actor
if improperly selected.

2.3 Deep Learning Concepts
In the previous section, neural networks were mentioned to be universal function ap-
proximators capable of learning complex abstract concepts. In this section, we provide

2. Theoretical Foundations 14

Figure 2.3: Weighted sum computation of a single neuron with 𝑛-input features
𝑥1, 𝑥2 . . . , 𝑥𝑛 and one output feature 𝑜𝑖, where 𝑖 denotes the 𝑖-th neuron of a hidden
layer (Cintra and Velho, 2011)

.

a short overview of the current state-of-the-art design concepts related to Deep Neural
Networks (DNN) which also overlap with the methods introduced in the related work
chapter 3.

2.3.1 Fully Connected Layers
Fully connected layers or also known as dense layers compute an input 𝑥1, 𝑥2, . . . , 𝑥𝑛 to
output 𝑜 mapping as a weighted sum between the network parameters and each unit of
the input space. Optionally we can add a bias term 𝑏 to the computation, and afterwards
perform a non-linearity operation denoted as 𝜙, as shown in equation 2.11.

𝑎 = 𝜙

⎛⎝ 𝑛∑︁
𝑗

𝑤𝑗𝑥𝑗 + 𝑏

⎞⎠ (2.11)

An illustration of a single neuron computation is shown in Figure 2.3. Since we intend to
train more elaborate feature extractors which can represent more complex problems, we
can use multiple neurons per layer and also stack multiple layers into a so called multi-
layer perceptron (Rosenblatt, 1961), as shown in Figure 2.4. Each neuron resembles
a linear combination of the entire input space and finds correlated patterns according
to all activations. The overall behavior of the subsequent layers shifts if only some
neurons activate differently, which also restricts us to introduce additional weights into
the system. This marks one of the most difficult parts in Deep Learning, since one
of the requirements for continual learning is to have a dynamically extensible system.
However, introducing additional weights in lower layers may disrupt the entire network.
To handle this issue, some strategies will be introduced in the next chapter 3.

To train our multi-layer network we usually rely on automatic differentiation (AD)
methods, first proposed in the 1970s by Linnainmaa, 1970, which recursively applies
the chain rule to evaluate the error at each layer respectively. A special case of AD is
known as the backpropagation algorithm, described in the following section.

2. Theoretical Foundations 15

Figure 2.4: Fully connected multi layer perceptron (Nielsen, 2016).

Backpropagation
To optimize the function output towards the target classes, it is necessary to update the
parameters of our network, such that we minimize the error between the predicted out-
put and the expected output. In almost all cases of DNN we operate on a large amount
of data, where we cannot process all available data at once to find the global mini-
mum. Therefore we perform stochastic sampling and compute batch-wise gradients to
minimize the error, known as mini-batch gradient descent (Ruder, 2016). Since stochas-
tic gradient descent introduces noise into our optimization problem, we can average
batch-wise evaluated errors 𝐶𝑥 and define our cost function 𝐶 as

𝐶 = 1
𝑏

∑︁
𝑥

𝐶𝑥, (2.12)

where 𝑏 denotes the sampled batch size. Afterwards we backpropagate the error term
𝛿𝑙

𝑗 evaluated from the cost function 𝐶 according to the layer-wise weight 𝑤𝑙
𝑗 and bias

𝑏𝑙
𝑗 contributions, where 𝑙 denotes the evaluated layer and 𝑗 the neuron at each layer 𝑙.

Equation 2.13 shows the partial gradients for the weights and biases, where 𝑎𝑙−1 marks
the activation values of the previous layer 𝑙 − 1.

𝜕𝐶

𝜕𝑤𝑙
𝑗𝑘

= 𝑎𝑙−1
𝑘 𝛿𝑙

𝑗 (2.13)

𝜕𝐶

𝜕𝑏𝑙
𝑗

= 𝛿𝑙
𝑗 (2.14)

The calculated gradient is used to determine the direction of the steepest descent for
which we update our weights 𝑤𝑙 and biases 𝑏𝑙 respectively. Listing 2.2 summarizes the
entire training steps (Nielsen, 2016):

2. Theoretical Foundations 16

Algorithm 2.2: Gradient Descent Algorithm
1. Select a set of training samples 𝑋.
2. For each training sample 𝑥: Set the corresponding input 𝑎𝑥,0, and perform the

following steps:
Feedforward: For each layer 𝑙 = 1, 2, 3, . . . , 𝐿 compute

𝑧𝑥,𝑙 = 𝑤𝑙𝑎𝑥,𝑙−1 + 𝑏𝑙 and 𝑎𝑥,𝑙 = 𝜙(𝑧𝑥,𝑙).
Output error 𝛿𝑥,𝐿: Compute the vector

𝛿𝑥,𝐿 = ∇𝑎𝐶𝑥 ⊙ 𝜙′(𝑧𝑥,𝐿).
Backpropagate the
error:

For each layer 𝑙 = 𝐿− 1, 𝐿− 2, . . . , 1 compute
𝛿𝑥,𝑙 = ((𝑤𝑙+1)𝑇 𝛿𝑥,𝑙+1)⊙ 𝜙′(𝑧𝑥,𝑙).

3. Gradient descent update step: For each 𝑙 = 𝐿, 𝐿−1, . . . , 1 update the weights
according to the rule 𝑤𝑙 ← 𝑤𝑙 − 𝜂

𝑚

∑︀
𝑥 𝛿𝑥,𝑙(𝑎𝑥,𝑙−1)𝑇 and the biases according to

𝑏𝑙 ← 𝑏𝑙 − 𝜂
𝑚

∑︀
𝑥 𝛿𝑥,𝑙.

The above algorithm generalizes to different types of architectures, such as CNNs
and LSTMs.

2.3.2 Activation Functions
The previous section gave an short introduction to the widely used backpropagation
algorithm and introduced the term of activation functions. However, the choice of the
proper activation function was left unanswered and represents an entire sub-field of
research. This section briefly covers the most common activation functions and explains
their main effects on the activation space.

The most important property of a non-linearity activation function is to remain
differentiable, such that we can backpropagate the error to lower layers and enable a
high gradient flow during training. For the next sub-sections we define 𝑧 as the activation
of our neuron output:

𝑧 =
∑︁

𝑗

𝑤𝑗𝑥𝑗 + 𝑏. (2.15)

Sigmoid
One of the first activation functions used, was the sigmoid function, illustrated in Figure
2.5 at the first row, first column. If 𝜙 is equivalent to:

𝜙(𝑧) ≡ 1
1 + 𝑒−𝑧 . (2.16)

Its active range is approximately within [−6, 6] and values beyond these thresholds have
in practice zero gradient information. In the activation space it provides either close to
0 values for the negative range or close to 1 values to the positive range. This property
makes it useful from a probabilistic perspective, since in a binary case, we can interpret
the sigmoid output probability as the decision boundary between two classes. The unit-
wise application of sigmoid activations is often used to define a gating function, which

2. Theoretical Foundations 17

Figure 2.5: List of common activation functions in neural networks.

allows the effects of forgetting or focusing on specific regions of the input space. The
usage of a sigmoid activation as the default non-linearity function for hidden layers in
deep neural structures rather troublesome, since the computed gradient is at most 1

4 at
the apex and falls towards zero at both extrema. By analyzing the first order derivative
of the sigmoid function 2.17 we can see how the values outside of the active range result
in zero gradients.

𝜙′(𝑧) = 𝜙(𝑧)(1− 𝜙(𝑧)). (2.17)
This gradient effect is known as the vanishing gradient problem, which was addressed in
the early work of Hochreiter in 1991 (Hochreiter, 1991) and defines a fundamental prob-
lem in deep neural networks. Usually, if one stacks more than three layers together, the
lower layers will start to suffer from diminishing gradient effects, since multiplications
with near zero values will result in almost zero updates.

tanh
The tanh function behaves similar to the sigmoid function, but ranges from −1 to 1 and
enables constant gradient at 0. For tanh we set 𝜙 equivalent to:

𝜙(𝑧) ≡ 𝑒2𝑧 − 1
𝑒2𝑧 + 1

. (2.18)

As shown in Figure 2.5 in the first row, second column, we get a wider range between
[−1, 1], which only slightly improves the vanishing gradient problem for values within
the active range, but for extreme values, we suffer from the same effects as in the sigmoid
case. The derivative of tanh is defined as

𝜙′(𝑧) = 1− tanh2(𝑧). (2.19)

2. Theoretical Foundations 18

ReLU
Rectified Linear Units (ReLUs) enabled the first deep neural structures (Glorot, Bordes,
and Bengio, 2011), since the gradient flow of ReLUs is constant for all positive values
of 𝑧, and offers a stabilizing saturations through its zero non-linearity on all negative
values. For 𝜙 equivalent to:

𝜙(𝑧) ≡ max(0, 𝑧), (2.20)
we get the first order derivative

𝜙′(𝑧) =
{︃

1 if 𝑧 > 0
0 if 𝑧 < 0.

(2.21)

It is important to state that the function is not fully differentiable at exactly zero,
but in practice, this does not matter. Although this method helps with the vanishing
gradient, the opposite effect can be demonstrated with setting a too high initialization
variance (G. Yang and Schoenholz, 2017), resulting in an exploding gradient. However,
ReLUs with proper initialization have shown outstanding performance, enable very deep
network structures, help finding sparse representations and are the de facto standard
for modern deep neural networks. For fully connected layers another non-linearity was
proposed by Klambauer et al., 2017, known as SELUs 2.3.2 and tackles the vanishing
and exploding gradient problem by self-normalization. The ReLU activation function is
shown in Figure 2.5 in the second row, first column.

Leaky ReLU
ReLUs help to find sparse representations, however, they can also suffer heavily from
dying neurons. By performing wrong initialization of ReLUs, we can easily end up with
a majority of the neurons never firing. Since it requires positive activation values to
remain in active state, backpropagation will pass no signals through the network if the
values are less then zero. To counter this issue, some empirical experiments (Xu et al.,
2015) were performed based on leaky ReLUs, which are a softer variant compared to
ReLUs, where we downscale 𝑧 instead of setting it to zero, such that the equivalence for
𝜙 is expressed as:

𝜙(𝑧) ≡ max(𝛼𝑧, 𝑧), (2.22)
where 𝛼 equals a very small scalar value, such as 0.1 as shown in Figure 2.5 second
row, second column. Further alternatives are Parametric Rectified Linear Unit PReLU,
where 𝛼 is trainable and not fixed as in the leaky ReLU case. The derivative is stated
as:

𝜙′(𝑧) =
{︃

1 if 𝑧 > 0
𝛼 if 𝑧 < 0.

(2.23)

This ensures that the neurons are never zero and hence cannot die.

ELU
Exponential Linear Units (ELUs) (Clevert, Unterthiner, and Hochreiter, 2015) are a spe-
cial case of leaky ReLUs, where instead of having an unbound negative value, the activa-
tion function shows the ability to saturate, which not only introduces noise-robustness

2. Theoretical Foundations 19

but also speeds up training and helps with generalization. The negative values also help
to keep the gradient closer to the unit gradient value. Setting the equivalence of the
activation function to

𝜙(𝑧) ≡
{︃

𝑧 if 𝑧 > 0
𝛼(𝑒𝑧 − 1) otherwise,

(2.24)

where the ELU saturation is controlled through the 𝛼 term, similar to the leaky ReLU
setting. In a simple case, a default value for 𝛼 = 1.0 as shown in Figure 2.5 third row,
first column. The derivative of the ELU is defined as:

𝜙′(𝑧) =
{︃

1 if 𝑧 > 0
𝛼𝑒𝑧(𝑒𝑧 − 1) if 𝑧 < 0.

(2.25)

SELU
Scaled Exponential Linear Units (SELUs) (Klambauer et al., 2017) are an improvement
of ELUs. They incorporate the property of self-normalizing the layer activations by
pushing them to zero mean and unit variance. This removes the need for batch normal-
ization (explained in section 2.3.4) for fully connected feedforward neural networks and
solves the vanishing and exploding gradient problem. This not only enables very deep
architectures and introduces a self regularizing scheme, but also ensures a very robust
learning procedure. Setting 𝜙 equivalence to

𝜙(𝑧) ≡ 𝜆

{︃
𝑧 if 𝑧 > 0
𝛼𝑒𝑧 − 𝛼 otherwise,

(2.26)

where 𝜆 ≈ 1.0507 and 𝛼 ≈ 1.6733 are calculated analytically, we can observe the
behavior of the SELU in Figure 2.5 third row, second column. The derivative of the
SELU is defined as:

𝜙′(𝑧) =
{︃

𝜆 if 𝑧 > 0
𝜆𝛼𝑒𝑧 if 𝑧 < 0.

(2.27)

Softmax
The softmax function can be established as a special case of the sigmoid function which
takes a un-normalized feature vector and normalizes it to a probability distribution for
all units. Input vectors can have negative or positive values and are re-normalized to
an interval between [0, 1]. The probability distribution is often used to match an one-
hot encoding setting when assigning prediction values to output classes. To specify the
softmax function we set 𝜙 equivalent to:

𝜙(𝑧) ≡ 𝑒𝑧𝑗∑︀𝐾
𝑘=1 𝑒𝑧𝑘

for 𝑗 = 1, . . . , 𝐾, (2.28)

where 𝐾 denotes the number of elements of the evaluated feature vector. The first order
derivative of the softmax function is defined as:

𝜙′
𝑗(𝑧𝑖) =

{︃
𝜙(𝑧𝑖)(1− 𝜙(𝑧𝑗)) if 𝑖 = 𝑗

−𝜙(𝑧𝑗)𝜙(𝑧𝑖) if 𝑖 ̸= 𝑗,
(2.29)

2. Theoretical Foundations 20

with partial derivatives of the 𝑖-th output and 𝑗-th input, since the softmax is a R𝐾 →
R𝐾 function.

2.3.3 Convolutional Layers
The first concepts of convolutional neural network (CNN) can be traced back to 1980,
known by the name Neocognitron proposed by Fukushima, 1980. Yet, this discovery did
not ignite the comeback of neural networks, because backpropagation was not used for
optimization and it took another nine years until LeCun, Boser, et al., 1989, published
the known LeNet architecture, that showed gradient-based optimization with shift in-
variant unit computations.

In contrast to fully connected units, convolutional units enable weight sharing prop-
erties, across the input space, known as filters. These shared filters not only drastically
reduce the number of parameters, since we do not require the same number of weights
per unit as there are input values, but also creates shift invariant activations, which en-
able the detection of objects or patches of objects independent of their spacial position.
Figure 2.6 shows a typical convolutional neural network architecture, where in many
architectures only the last layers are defined by dense layers, to map relations between
activations. Such filters are mere matrices as illustrated in Figure 2.7 and convolve over

Figure 2.6: Simple CNN architecture scheme (Wikipedia, 2019a).

the input space, where some regions show higher activations, if the input matches with
the filter structure, whereas others will be canceled out or damped. Filters can be 𝑁 -
dimensional tensors, although usually in image recognition tasks we define 2d kernel
filters. The size of the filters defines the receptive field of a unit, which is moved across
the input space. Because kernel filters have originated from the computer vision field,
other elements that reduce the dimensionality of the input space are also applicable,
such as average pooling and max-pooling layers. Max-pooling uses the maximum acti-
vation within the defined filter and average pooling averages for all activations within
the filter. Although max-pooling is a non-reversible function, it is often used in practice
as it reduces the dimensionality of the input space. The resulting activations from a
2d convolution is a volume of size 𝐻 × 𝑊 × 𝐶, denoting height, width and channel
size respectively (Stanford Blog, 2019). To evaluate the dimensions for the width and
height, we need to compute the values based on the kernel filter size, stride movement

2. Theoretical Foundations 21

Figure 2.7: CNN kernel filter example (Chatterjee, 2017).

and padding around the image as shown in equation 2.30.

output =
[︂

input + 2× padding− kernel
stride

]︂
+ 1 (2.30)

An important statement is the notion of effective receptive field of neurons within the
hidden layers, since they indirectly determine the representation capabilities at each
layer (Luo et al., 2017). In contrast to the receptive field, which is the field of view
for each neuron towards its input space, the effective receptive field can be computed
for subsequent layers to establish how much a neuron perceives and hence contributes
to the output. It has been analyzed that the units at the center of the input image
contributed more to the overall outcome. The effective receptive field is asymptotically
Gaussian distributed from the center and only takes a fraction of the theoretical available
receptive field. One interesting analysis of Luo et al., 2017 is that skip connections in
neural networks decrease the effective receptive field, and currently, subsampling and
dilated convolutions are an effective way to increase the effective receptive field. Dilated
convolutions are a special type of convolution, where the filter mask allows to skip input
values, such that a sparse mask is convolved over the input space (Yu and Koltun, 2015).

2.3.4 Batch Normalization
The depth of modern artificial neural architectures has greatly grown over the past
years as seen in deep Residual Networks (ResNet) with greater than 1000 layers (He
et al., 2015). One key component which enabled this growth is batch normalization.
Neural networks stack layer-wise operations to extract meaningful information from
their input space. Since each layer’s output depends on the predecessor’s values and the
distributions of these values shift continuously during training, we need small learning
rates to stabilize the training process and are highly dependent on the initial weight
conditions. The deeper we build the networks the harder they become to stabilize the
distributions of activations during training. To counter this effect Ioffe et al. introduced
batch-wise input value normalization, which is applied during training on each mini-
batch (Ioffe and Szegedy, 2015). First they compute the mini-batch mean such that

𝜇ℬ ←
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖, (2.31)

2. Theoretical Foundations 22

where ℬ = {𝑥1...𝑚} represents the range of mini-batch values. Then they compute the
mini-batch variance as

𝜎2
ℬ ←

1
𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝜇ℬ). (2.32)

Then they normalize the values by computing

�̂�𝑖 ←
𝑥𝑖 − 𝜇ℬ√︁

𝜎2
ℬ + 𝜖

, (2.33)

where 𝜖 is a constant for numerical stability. Additionally, they introduce two new
trainable parameters 𝛾 and 𝛽, which rescale and shift the normalized value such that

𝑦𝑖 ← 𝛾�̂�𝑖 + 𝛽. (2.34)

This normalization allows higher learning rates, makes the network less sensible to pa-
rameter initialization and speeds up convergence, even if the values are not decorrelated
(Montavon, Orr, and Müller, 2012). To combat inference, they simply perform a linear
transformation and need to fix the mean and variance and they require a minimum
batch dimension.

2.3.5 Layer Normalization
In contrast to batch normalization, this method is not dependent on the mini-batch size
and was introduced to help to stabilize the hidden state of recurrent neural networks (Ba,
Kiros, and Hinton, 2016). They, therefore, compute the layer normalization statistics
for all hidden units such that the layer mean is obtained by computing

𝜇𝑙 = 1
𝐻

𝐻∑︁
𝑖=1

𝑎𝑙
𝑖 (2.35)

and the layer standard deviation is obtained by computing

𝜎𝑙 =

⎯⎸⎸⎷ 1
𝐻

𝐻∑︁
𝑖=1

(𝑎𝑙
𝑖 − 𝜇𝑙)2, (2.36)

where 𝐻 the number of hidden units in a layer. All hidden units share the same nor-
malization 𝜇 and 𝜎. This also lifts the constrain of batch normalization and allows a
batch size of 1.

2.3.6 Dropout
According to Hinton et al. one of the causes of feedforward neural networks to overfit
are neurons learning co-adaptive features, which are only helpful in the context of other
neurons (Hinton, Srivastava, et al., 2012). When training, he proposed to randomly
drop out a percentage of neurons, forcing each neuron to learn a feature detector that

2. Theoretical Foundations 23

is in general meaningful to the task and not to specifics according to other activations.
Equation 2.37 shows the dropout scheme for the activations ℎ.

ℎ′ =
{︃

0 with probability 𝑝
ℎ

1−𝑝 otherwise
(2.37)

When testing, all neurons are set active, but the activations are normalized by the
dropout factor to compensate the greater activation values. This method has similarities
between training multiple neural networks based on the same weight space and averaging
their predictions.

2.3.7 Embedding
Embeddings are usually used in natural language processing where the similarity be-
tween words is computed according to some defined metric on the feature vectors, such
as the cosine similarity (PyTorch Tutorials, 2017). Similar feature vectors result in the
same embedding representation and therefore in the same region of the vector space.
This allows functional transformations, were, for example, the word king minus the word
men plus the word women results in the word queen. In deep learning the word vector
mapping is usually modeled using a few preceding and following words as a context
to predict the currently required word. This is known as the Continuous Bag-of-Words
model. This relational mapping is not only helpful in cases of word embeddings, but
was also often applied to create feature mappings projecting attention masks, or other
encodings helpful for neural network modeling.

2.3.8 Attention
Attention is a technique that gained popularity with the proposal of the Neural Ma-
chine Translation paper (Luong, Pham, and Manning, 2015), which offered a gating
mechanism for the encode-decoder state and enabled an automatic soft-search mecha-
nism. This can be applied as a hard—either zero or one—or a soft attention mask with
values continuously ranging from zero to one. It is often implemented using Softmax
non-linearity to enforce hight regularization, since the values have to sum up to one. In
the case of sigmoid-based attention with trainable parameters such as embeddings, we
use L1 regularization to emphasize sparsity. Attention-based models not only showed
outstanding results on language translation tasks (Bahdanau, Cho, and Bengio, 2015)
but also by applying them on convolutional neural networks and lately in the convo-
lutional self-attention model (B. Yang et al., 2019). Chapter 3 will introduce “Hard
Attention to the Task” (Serrà et al., 2018), which uses hard attention masks to filter
activations to overcome catastrophic forgetting.

2.4 Architectures
After the comeback of neural networks in 2005—based on LeNet developed by LeCun,
Bottou, et al., 1998—many architectures were proposed. The most prominent ones are
AlexNet from the University of Toronto (Krizhevsky, Sutskever, and Hinton, 2012), In-
ceptionNet from Google (Szegedy et al., 2014), VGGNet from the University of Oxford

2. Theoretical Foundations 24

(Simonyan and Zisserman, 2014), ResNet from Microsoft Research (He et al., 2015) and
DenseNet from Facebook AI Research and the Cornell University (Huang, Z. Liu, and
Weinberger, 2016). These architectures mainly differ in three components: the amount
of weights, the wiring of skip connections and the parallel computations paths. VGGNet-
19—which is similar to AlexNet, but offers much deeper layer structure—has the largest
amount of parameters, which makes it the most difficult to regularize. InceptionNet first
used parallel pathways to compute not only one type of convolution, but a mixture of
1×1, 3×3 and 5×5 convolutions in parallel. Furthermore, it included max pooling and
concatenated all outputs for the next layer computation. ResNet introduced residual
identity mappings, allowing for one pathway to compute convolutions and the other to
concatenate the original activations with the transformed activations. DenseNet brought
multiple skip connects together which not only use the previous layer activations, but al-
most all previous layer activations. All these improvements allow to preserve the original
information for higher layers but still enable meaningful transformations and also mainly
improve the gradient flow during the backward pass. AlexNet offers no skip connections
or parallel computation paths and is simply computing layer-wise transformations. This
makes it ideal for evaluating improvements, such as vanishing or exploding gradients,
without introducing unwanted side effects. Although it is a simplistic architecture it first
showed a significant improvement at the annual ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) in 2012 and has been often used as a reference architecture
to evaluate new neural network adaptions with state-of-the-art performance. In this
section we will introduce the main architecture of AlexNet, which will be used in all
subsequent chapters, since all related papers and experiments are based on AlexNet and
we want to conclude on a comparable baseline.

2.4.1 AlexNet
AlexNet mainly stacks three convolutional layers which are altering between convolu-
tion, ReLU activation, Dropout, and Max Pooling and combines the spacial invariant
features in the two top fully connected layers. For the tests conducted in this thesis, we
will mainly use the AlexNet with Dropout architecture (Goodfellow, Mirza, et al., 2014)
since all the related papers conducted experiments with the same architecture and we
want to remain comparable to existing benchmarks. The datasets used are CIFAR-10
and CIFAR-100, the input space consists of 32 × 32 × 3 pixels (3 corresponds to the
RGB color channels). This results in the stacked convolutions and hyperparameters as
shown in Listing 2.1. whereas in represents the channel input dimensions, out the chan-
nel output dimensions, 𝑘 the kernel size, 𝑠 the strides, 𝑝 the paddings in the context of
convolutional layers and in the context of dropout layers the dropout probability. The
dimension of the last layer is dependent on the defined number of classes for each task
𝑡.

2.5 Datasets
This section introduces the visual datasets that are used to conduct the experiments
and assessing the improvements. It was chosen according to the papers introduced in
chapter 3 to compare and conduct the experiments which will be presented in chapter

2. Theoretical Foundations 25

1. Input: 𝑥 = 32× 32× 3
2. Convolution: in = 3, out = 64, 𝑘 = 4× 4, 𝑠 = 1, 𝑝 = 0
3. ReLU
4. Dropout: 𝑝 = 0.2
5. Max Pooling: 𝑘 = 2× 2
6. Convolution: in = 64, out = 128, 𝑘 = 3× 3, 𝑠 = 1, 𝑝 = 0
7. ReLU
8. Dropout: 𝑝 = 0.2
9. Max Pooling: 𝑘 = 2× 2

10. Convolution: in = 128, out = 256, 𝑘 = 2× 2, 𝑠 = 1, 𝑝 = 0
11. ReLU
12. Dropout: 𝑝 = 0.5
13. Max Pooling: 𝑘 = 2× 2
14. Fully Connected: in = 1024, out = 2048
15. ReLU
16. Dropout: 𝑝 = 0.5
17. Fully Connected: in = 2048, out = 2048
18. ReLU
19. Dropout: 𝑝 = 0.5
20. Fully Connected: in = 2048, out = number of classes per task t,

Table 2.1: AlexNet layer operation stack.

6. In general, CIFAR-10 and CIFAR-100 are labeled as subsets of the 80M tiny images
dataset (University of Toronto Website, 2009). The advantage of using a visual dataset
is that the data is human understandable and methods such as attention can be visually
analyzed by observing the resulting activation space.

2.5.1 CIFAR-10
CIFAR-10 consists of 60000 color images with a dimension 32× 32× 3, where the first
two dimensions denote the 2-D pixel plane and the last dimension the RGB channels.
The 60000 images are divided into 10 classes of each 6000 samples. Furthermore, 50000
images are intended for training and 10000 for testing. The test batches contain 1000
randomly selected images from each class. Figure 2.8 gives an example of 10 random
images from each class.

2.5.2 CIFAR-100
This dataset is similar to CIFAR-10, except that it consists of 100 different classes con-
taining 600 images per class (University of Toronto Website, 2009). Each class consists
of 500 training samples and 100 test samples. The 100 classes in CIFAR-100 are grouped
into 20 main classes, such as that a main class fish contains sub-classes aquarium fish,

2. Theoretical Foundations 26

Figure 2.8: 10 random images per class from CIFAR-10 (University of Toronto Website,
2009).

flatfish, ray, shark, etc.

Chapter 3

Related Work

“You don’t understand anything until
you learn it more than one way.“

Marvin Minsky

This chapter will introduce several related approaches targeting the issue of catas-
trophic forgetting. An overview of the obtained results and a comparison will be offered
in the next chapter 4.

3.1 Progressive Neural Networks

Progressive Neural Networks (PNN) proposed by DeepMind is an approach to prevent
catastrophic forgetting by dynamically extending the network capacity with each task
respectively (Rusu et al., 2016). In simple transfer learning a network is adjusted by first
freezing the weights of all lower layers and typically only fine-tuning the parameters of
the output layer, to perform well on new task. Not only does this disrupt the parameters
for all previously trained tasks, but also assumes that the new task has representational
overlap within the extracted features from the frozen layers. This might not be true,
since new tasks can have orthogonal feature representations and might not be fully
describable by the obtained feature set. To enable knowledge transfer between tasks
and allow enough adaptiveness to learn new task specifics, they define the set of weights
of a neural network as columns and with every added task they extend the previous
columns by introducing additional weights. Starting with one column, consisting of 𝐿

layers with 𝑛𝑖 number of units, such that each layer is defined as ℎ
(1)
𝑖 = R𝑛𝑖 , they train

the network parameters Θ(1) until convergence. Before switching to a new task, the
weights of the previous task Θ(1) are frozen and the columns are enlarged with a set
of additional weights Θ(2). These additional weights offer lateral connection to previous
columns, such that ℎ

(2)
𝑖 receives input from ℎ

(2)
𝑖−1 and ℎ

(1)
𝑖−1, which ensures that at each

layer the previously trained weights remain preserved and only additional features are
learned. Note that the expansion factor is smaller than the initially defined weights,
since they reuse previous columns features. Illustration 3.1 gives an overview of a three
column neural network. Equation 3.1 offers a more formal description.

27

3. Related Work 28

Figure 3.1: The first dashed column represents the initial network and the right handed
columns include lateral connections to their predecessors, reusing their activations for
further computation (Rusu et al., 2016).

ℎ
(𝑘)
𝑖 = 𝑓

⎛⎝𝑊
(𝑘)
𝑖 ℎ

(𝑘)
𝑖−1 +

∑︁
𝑗<𝑘

𝑈
(𝑘:𝑗)
𝑖 ℎ

(𝑗)
𝑖−1

⎞⎠ , (3.1)

whereas 𝑊
(𝑘)
𝑖 ∈ R𝑛𝑖×𝑛𝑖−1 is the weight matrix of layer 𝑖 at column 𝑘, 𝑈

(𝑘:𝑗)
𝑖 ∈ R𝑛𝑗×𝑛𝑗

represents the lateral connections of layer 𝑖 − 1 of column 𝑗, to layer 𝑖 of column 𝑘.
ℎ

(.)
0 defines the input layer and in the implementation of PNN uses ReLUs for the non-

linearity operation with 𝑓 = max(0, 𝑥). In practice, the lateral connections will grow
with the number of tasks and hence to reduce the increase of computation they apply a
non-linearity mapping of previous features. This is achieved by projecting the anterior
features as

ℎ
(𝑘)
𝑖 = 𝑓

(︁
𝑊

(𝑘)
𝑖 ℎ

(𝑘)
𝑖−1 + 𝑈

(𝑘:𝑗)
𝑖 𝑓(𝑉 (𝑘:𝑗)

𝑖 𝛼
(<𝑘)
𝑖−1 ℎ

(<𝑘)
𝑖−1)

)︁
, (3.2)

where they define ℎ
(<𝑘)
𝑖−1 = [ℎ(1)

𝑖−1 . . . ℎ
(𝑗)
𝑖−1 . . . ℎ

(𝑘−1)
𝑖−1] as a single vector of dimensionality

𝑛
(<𝑘)
𝑖−1 , 𝑉

(𝑘:𝑗)
𝑖 ∈ R𝑛𝑖−1×𝑛

(<𝑘)
𝑖−1 as the projection matrix and 𝛼

(<𝑘)
𝑖−1 as a learnable scaling

factor compensating for the different input scales. For dimensionality reduction of con-
volutional layers, 1 × 1 convolutions are applied and for fully connected layers they
replace the linear lateral connections by a multilayer perceptron (MLP).

The bottom line 3.1.1 Since the weights of previously trained task are never al-
tered, this approach is innate to catastrophic forgetting by design. But the number
of weights also grows with the number of tasks, which defines a limit to the maxi-
mum number of computation and memory one can provide. Furthermore, it is not
guaranteed that the introduced activation noise from the lateral connection, does not

3. Related Work 29

disrupt learning of new tasks, if the number of tasks grows very large.

3.2 Elastic Weight Consolidation
Based on neuro-biological studies, which consider computational principles how mem-
ories are stored and retained through synaptic plasticity and the emergent neural in-
teractions (Benna and Fusi, 2016), DeepMind (Kirkpatrick et al., 2017) proposed an
algorithm that claims to imitate the excitatory task-specific synaptic consolidation of
the mammalian brain. It is believed that the neocortex permanently memorizes previ-
ously learned tasks by adjusting the plasticity of its synapses enforcing the retention of
important skills over long timescales. Training neural networks is achieved by optimizing
a set of parameters 𝜃 over multiple iterations w.r.t. the data set 𝒟. According to Hecht-
Nielsen, 1989, many parameter configurations can be found, such that 𝜃 will result in
similar performance. One can assume that over-parametrization enables us to find a
solution that suits multiple tasks in a common sub-space. Given a two task problem,
optimizing on task 𝐵 with a parameter set 𝜃*

𝐵, we can search for a close optimal solution
compared to the previously found solution of task 𝐴, with parameters 𝜃*

𝐴, such that by
constraining the training procedure of task 𝐵 to follow a path of low error on both
tasks. This constrain can be implemented as quadratic regularization penalty. Figure
3.2 illustrates a schematic overview of Elastic Weight Consolidation (EWC). Viewing

Figure 3.2: Illustration of the effect of EWC (red) on the weights updated, compared to
L2 regularization (green) and no regularization (blue). It can be seen that EWC enforces
the weights of 𝜃*

𝐵 to move in a region where 𝜃*
𝐴 and 𝜃*

𝐵 overlap. If simple L2 regularization
is applied, this results in a sub-optimal update for both tasks. With no regularization term,
only task 𝐵 is favored and everything about task 𝐴 will be forgotten (Kirkpatrick et al.,
2017).

the training process of a neural network from a probabilistic perspective, gives the jus-
tification for the assumption of continuous learning so that we can train on both tasks
sequentially. Due to Bayes’ rule, the problem can be framed as a conditional probability
𝑝(𝜃|𝒟) such that:

𝑝(𝜃|𝒟) = 𝑝(𝒟|𝜃)𝑝(𝜃)
𝑝(𝒟) , (3.3)

where 𝑝(𝜃) forms the prior probability w.r.t. the parameters trained on previous tasks
and 𝑝(𝒟|𝜃) the likelihood of the data, and with the log-likelihood log 𝑝(𝒟|𝜃) represent-

3. Related Work 30

ing the negative of the loss function −ℒ(𝜃). Assuming that 𝒟 can be split into two
independent data sets 𝒟𝐴 and 𝒟𝐵, the above statement can be rephrased as:

log 𝑝(𝜃|𝒟) = log 𝑝(𝒟𝐵|𝜃) + log 𝑝(𝜃|𝒟𝐴)− log 𝑝(𝒟𝐵). (3.4)

log 𝑝(𝜃|𝒟) is still describing the posterior probability of the entire dataset 𝒟, yet the
loss function to optimize on task 𝐵 only depends on log 𝑝(𝒟𝐵|𝜃), such that the posterior
of task 𝐴 is entirely encoded in log 𝑝(𝜃|𝒟𝐴), therefore it is important to constrain the
update on important weights of task 𝐴. Usually, the posterior is intractable and re-
quires an approximation to be applicable. In the EWC paper a Laplace approximation
was applied, originally proposed by MacKay, 1998, which approximates posteriors as a
Gaussian distribution with mean 𝜃*

𝐴 and the diagonal precision of the Fisher information
matrix 𝐹 . The Fisher information matrix is easier to compute since it can be obtained
through the first-order derivation during backpropagation. Furthermore, it represents
the second-order derivative of a loss near a minimum with guaranteed positive semi-
definite outcome. This approach is similar to the expectation propagation method. Each
subtask can be defined as a factor of the posterior, which approximates an intractable
probability distribution 𝑝(𝑥) with a tractable probability distribution 𝑞(𝑥). This is done
by minimizing the Kullback-Leibler divergence 𝐷𝐾𝐿(𝑝 || 𝑞) between them. By applying
these approximations, we can state the new loss function as:

ℒ(𝜃) = ℒ𝐵(𝜃) +
∑︁

𝑖

𝜆

2 𝐹𝑖(𝜃𝑖 − 𝜃*
𝐴,𝑖)2, (3.5)

where ℒ𝐵(𝜃) defines the loss function for task 𝐵 and 𝜆 defines a hyperparameter, which
establishing the rate of importance of the previous task 𝐴. This approach can be gen-
eralized by optimizing on a third task 𝐶, results in applying two separate penalties for
𝐴 and 𝐵 respectively or by summing up their penalties.

The bottom line 3.2.1 This approach finds common weight settings of multiple
tasks, which stabilizes the network updates on future tasks to reuse pre-computed fea-
tures. The drawback is that it does not guarantee the avoidance of gradual forgetting
over long training sequences on different tasks. Additionally, the Fisher information
matrix is a point wise estimate of a trained task and does not provide additional
information of the training trajectories.

3.3 Less-Forgetting Learning
Jung et al., 2016, proposes a method related to transfer learning, which is more robust to
catastrophic forgetting. The idea is to train a network and copy the pre-trained weights
of the source network as initial weights for the target network. Before training on the
new task they freeze the parameters of the softmax classifier and allow fine-tuning of the
shared parameters. Afterwards they try to preserve the original activation distributions
to match the classifier of the source network, while optimizing on the target network
data as visualized in Figure 3.3

Given a multi-headed network output, where each classifier head represents a set
of target classes for a given task, they first require an estimate of all previous layer

3. Related Work 31

Figure 3.3: Schematic for describing less-forgetting learning (Jung et al., 2016).

probability distributions and after the optimization step, they try to reconstruct the
same probabilities. The lower layers operate as mere feature extractors and the last layers
operate as a linear classifier, usually implemented by a softmax function. This means
that the extracted features obtained according to the weights before the softmax layer
establish the decision boundaries to differentiate between the target classes. The features
are an abstracted higher dimensional manifold of the original input data. This allows
the softmax layer to easily perform a linear separation. To avoid disruptive updates of
previous tasks the resulting decision boundaries must remain unchanged. After switching
to a new task the source data is unavailable to verify the decision boundaries. By
forwarding the target data activations to the source classifier Less-Forgetting Learning
(LFL) fine-tunes parameters and regularizes the updates by measuring the shift in
distributions. To correct the shift of feature representations, while optimizing on the
new task, the following regularization term was applied to the loss function:

ℒ(𝑥, 𝑦, �̂�; 𝜃(𝑠), 𝜃(𝑡)) = 𝜆𝑐ℒ𝑐(𝑥, 𝑦, �̂�; 𝜃(𝑡)) + 𝜆𝑒ℒ𝑒(𝑥; 𝜃(𝑠), 𝜃(𝑡)), (3.6)

where (𝑥, 𝑦) ∈ 𝒟(𝑡) are input and label samples from the target data set. 𝑦 denotes
the predictions from the target network, ℒ𝑐 and ℒ𝑒 represent the cross-entropy and
Euclidean loss function respectively. 𝜃(𝑠) and 𝜃(𝑡) are the source and target weights. 𝜆𝑐

and 𝜆𝑒 are hyperparameters to regulate the task importance. The cost function for the
cross-entropy loss is defined as:

ℒ𝑐(𝑦, �̂�; 𝜃(𝑡)) = −
𝑚∑︁

𝑖=1
𝑦𝑖 log(𝑦𝑖(𝑥𝑖; 𝜃(𝑡))), (3.7)

where 𝑚 refers to the number of classes for the new target task. The cost function for
the Euclidean loss is defined as:

ℒ𝑐(𝑥; 𝜃(𝑡)) = 1
2

⃦⃦⃦
𝑣𝐿−1(𝑥; 𝜃(𝑠))− 𝑣𝐿−1(𝑥; 𝜃(𝑡))

⃦⃦⃦2
, (3.8)

here 𝑣𝐿−1 denotes the resulting feature vectors for the 𝐿 − 1 layer. If the number of
tasks increases and requires to learn orthogonal features, this approach shows a quick
decrease in performance, which will be further explore in the next chapter 4.

3. Related Work 32

The bottom line 3.3.1 According to the objective function, the authors of LFL
demonstrate a novel approach to maintain similar features, which are required by
previous task classifiers to maintain performance. This is achieved by correcting on
target output probabilities while training on the new target data.

3.4 Learning Without Forgetting

Learning Without Forgetting (LWF) (Li and Hoiem, 2017) is a novel sequential learning
method and offers some similarities to the previously introduced LFL method. First,
we divide the neural network weights into three main parts: 𝜃𝑜, 𝜃𝑠, 𝜃𝑛, which represents
the old, shared and new weights respectively. Similar to LFL Li et al. trains the model
by using only new data samples and regularizes the classifier distributions of old task
classifiers. The task-specific parameters of the new and old tasks are usually fully con-
nected layers at the top of the neural network. The set of shared parameters, which are
feature extractors, are usually convolutional layers. When adding a new task, one also
introduces new task-specific parameters 𝜃𝑛 to tune the distribution values with the out-
put of the shared parameters and record the output of old task-specific parameters. The
output layers are usually implementing a softmax layer, therefore, the output is usually
a probability distribution over all task-specific classes. Afterwards, they jointly train
all parameters with the addition of a regularization term to preserve old probabilities,
similar to LFL. This approach mainly differs from jointly training a neural network on
all tasks by only using the data from the new task, and estimating the distribution from
the output layers of old tasks. Unlike in LFL, when training on a new task, the training
procedure first freezes the weights of 𝜃𝑜 and 𝜃𝑠, and updates only 𝜃𝑛 until convergence
(warm-up step), and afterwards, all remaining parameters are jointly fine-tuned. Their
experiments used a multinomial logistic loss:

ℒnew(𝑦, �̂�) = −𝑦𝑛 log �̂�𝑛, (3.9)

where 𝑦𝑛 is the one-hot encoded ground truth label vector and �̂�𝑛 the network output.
To compute the loss between the recorded output of the original network and the current
output, the proposed Knowledge Distillation loss from Hinton, Vinyals, and Dean, 2014,
was used, which is a modified cross-entropy loss. This put more emphasize on smaller
probabilities and showed better performance, compared to LFL:

ℒold(𝑦𝑜, �̂�𝑜) = −𝐻(𝑦′
𝑜, �̂�′

𝑜) (3.10)

= −
𝑙∑︁

𝑖=1
𝑦′(𝑖)

𝑜 log 𝑦′(𝑖)
𝑜 , (3.11)

where 𝑙 is the number of labels and 𝑦′(𝑖)
𝑜 , 𝑦′(𝑖)

𝑜 are the recorded and current version of
the probabilities, 𝑦(𝑖)

𝑜 , 𝑦(𝑖)
𝑜 , defined as:

𝑦′(𝑖)
𝑜 =

𝑇

√︁
𝑦(𝑖)

𝑜∑︀
𝑗

𝑇

√︁
𝑦(𝑗)

𝑜

, 𝑦′(𝑖)
𝑜 =

𝑇

√︁
𝑦(𝑖)

𝑜∑︀
𝑗

𝑇

√︁
𝑦(𝑗)

𝑜

, (3.12)

3. Related Work 33

with 𝑇 > 1, which increases the weight of small logit values, encoding better similarities.
The experiments evaluated that 𝑇 = 2 worked best. This defines the objective of LWF
as:

argmin
𝜃𝑜,𝜃𝑠,𝜃𝑛

= 𝜆ℒold(𝑌𝑜, 𝑌𝑜) + ℒnew(𝑌𝑜, 𝑌𝑜) +ℛ(𝜃𝑜, 𝜃𝑠, 𝜃𝑛), (3.13)

where 𝜆 denotes a measure of the importance of old tasks; if 𝜆 > 1 then the old tasks
are favored and vice versa. In the case of multi-label classification or training multiple
tasks at once, the losses are simply summed up. To minimize the loss for all tasks, they
use stochastic gradient descent with weight decay of 0.0005.

The bottom line 3.4.1 Although Less-Forgetting Learning and Learning Without
Forgetting seem very similar, the authors of LWF show a more robust learning
curve on multiple tasks. The issue of learning many tasks sequentially remains the
same, since both LFL and LWF approaches try to track and correct multiple output
distributions of long task sequences.

3.5 Incremental Moment Matching

The authors of Incremental Moment Matching (IMM), proposed two methods (mean-
IMM and mode-IMM) for incrementally matching the moments of a posterior distribu-
tion, when training sequentially on different tasks (Lee et al., 2017). Mean-IMM averages
the parameter moments of multiple networks and mode-IMM uses the covariance infor-
mation of the posterior of Gaussian distribution to match the moments. These methods
have some parallels to EWC. Both methods alter the objective function by applying a
regularization term to constrain forgetting when learning new tasks. Furthermore, these
approaches can also be interpreted as an approximation of a sequential Bayesian learn-
ing method. Assuming that the posterior distribution of the random variables (network
parameters) can be combined into a mixture of Gaussian (MoG) posterior according
to each task and further on to a MoG representing all tasks. This results in combining
their partial objective functions into one convex-like objective. Figure 3.4 illustrates the
weight transition w.r.t. the regularized objectives. The assumption of representing all
tasks as mixture of Gaussians posts a strong constrain on the trained parameters and
has great implications on the behavior of the loss function. In fact, this assumption
does not hold, since most datasets are not Gaussian distributed and since the model
parameters can result in non-convex loss behavior. But in practice Le et al. showed
that IMM offers great performance and validates the assumptions. Furthermore, they
propose three different IMM implementations using transfer learning technique, such as
weight-transfer, L2-transfer and drop-transfer to increase performance while training.

3.5.1 Matching Posterior Distributions
To approximate the posterior distribution 𝑝1:𝐾 of the network parameters 𝜃 via a Gaus-
sian approximation 𝑞1:𝐾 for all 𝐾 tasks combined, they evaluate the optimal 𝜇*

1:𝐾 and
Σ*

1:𝐾 , so that they approximate

𝑝1:𝐾 ≡ 𝑝(𝜃|𝑋1, . . . , 𝑋𝐾 , 𝑦1, . . . , 𝑦𝐾) ≈ 𝑞1:𝐾 ≡ 𝑞(𝜃|𝜇1:𝐾 , Σ1:𝐾), (3.14)

3. Related Work 34

Figure 3.4: Geometric illustration of the incremental moment matching (IMM) method
using two Gaussian mixtures to match the moments by regularizing the loss. mean-IMM
averages the weights and mode-IMM finds the maximum of the mixture of Gaussian
posteriors (Lee et al., 2017).

where 𝑋1, . . . , 𝑋𝐾 represents the input features of task 𝑘 = 1 . . . 𝐾 and 𝑦1, . . . , 𝑦𝐾 the
targets of each task respectively. Since the distributions are matched in an incremental
way, they define

𝑝𝑘 ≡ 𝑝(𝜃|𝑋𝑘, 𝑦𝑘) ≈ 𝑞𝑘 ≡ 𝑞(𝜃|𝜇𝑘, Σ𝑘), (3.15)

optimizing for the training set (𝑋𝑘, 𝑦𝑘). 𝜃 ∈ R𝑑, where 𝑑 represents the number of
trainable network parameters, which concludes in 𝜇𝑘 ∈ R𝑑 and Σ𝑘 ∈ R𝑑×𝑑.

3.5.2 Mean-based IMM
The objective function of the mean-IMM is to minimize the Kullback-Leibler divergence
between 𝑞𝑘 and 𝑞1:𝐾 by computing

𝜇*
1:𝐾 , Σ*

1:𝐾 = argmin
𝜇1:𝐾 ,Σ1:𝐾

𝐾∑︁
𝑘=1

𝛼𝑘𝐷𝐾𝐿(𝑞𝑘 || 𝑞1:𝐾), (3.16)

𝜇*
1:𝐾 =

𝐾∑︁
𝑘=1

𝛼𝑘𝜇𝑘, (3.17)

Σ*
1:𝐾 =

𝐾∑︁
𝑘=1

𝛼𝑘

(︁
Σ𝑘 + (𝜇𝑘 − 𝜇*

1:𝐾(𝜇𝑘 − 𝜇*
1:𝐾)𝑇)

)︁
. (3.18)

𝜇*
1:𝐾 and Σ*

1:𝐾 represent the optimal solution of the KL-divergence and 𝛼𝑘 a mixing
ratio with

∑︀𝐾
𝑘=1 𝛼𝑘 = 1, which weights the contribution of each task equally. After each

task they average over the current and previous model parameters. When training on
a new task the old model parameters are used as a L2 regularization, preventing large
parameter updates.

3. Related Work 35

3.5.3 Mode-based IMM
Unlike mean-IMM, mode-IMM uses the covariance information Σ𝑘 of the posterior of
Gaussian distributions. To obtain the mode while operating only on two parameter
sets (current and previous task parameters) the Ray and Lindsay method was applied
showing that any 𝐷-dimensional, 𝐾-component normal mixtures, can be defined on a
(𝐾 − 1)-dimensional hypersurface, which is guaranteed to include all critical points,
including the modes of the 𝐷-dimensional mixture density (Ray and Lindsay, 2005). So
all the modes for 𝜃 can therefore be given by⎧⎨⎩𝜃

⃒⃒⃒⃒
⃒⃒ 𝜃 =

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘 𝜇𝑘

)︃−1

·
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘 , 0 < 𝛼𝑘 < 1 and
∑︁

𝑘

𝛼𝑘 = 1

⎫⎬⎭ . (3.19)

Although there is no tight upper bound on the number of modes for the MoG, there is
a guess that for all 𝐷, 𝐾 ≥ 1 it is 𝐷+𝐾+1𝐶𝐷 (Améndola, Engström, and Haase, 2017).
Given the MoG, one defines an approximation using the Laplacian method, where the
logarithm of the function is expressed by the Taylor expansion:

log 𝑞1:𝐾 ≈
𝐾∑︁

𝑘=1
𝛼𝑘 log 𝑞𝑘 + 𝐶 (3.20)

≈ −1
2𝜃𝑇

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘

)︃
𝜃 +

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘 𝜇𝑘

)︃
𝜃 + 𝐶 ′. (3.21)

This allows to compute the parameters 𝜇*
1:𝐾 and Σ*

1:𝐾 :

𝜇*
1:𝐾 = Σ*

1:𝐾 ·

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘 𝜇𝑘

)︃
(3.22)

Σ*
1:𝐾 =

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘

)︃−1

(3.23)

When implementing equation 3.23 the expression was inverted by multiplying with the
identity matrix 𝐼 and a constant scaling factor 𝜖:

(︀
Σ*

1:𝐾
)︀−1 =

(︃
𝐾∑︁

𝑘=1
𝛼𝑘Σ−1

𝑘

)︃−1

· 𝜖𝐼. (3.24)

Since computing the covariance matrix gives the runtime complexity of 𝒪(𝐷2), by
adding the assumption that the parameters of the covariance matrix are not corre-
lated, they show that it reduces the tractable dimensions to its diagonal. This results
in a runtime complexity of 𝒪(𝐷). To compute the covariance, the inverse of the Fisher
information matrix was used, which represents the variance of the score, whereas the
score is defined as the gradient of the log-likelihood w.r.t. 𝜃. It adjusts the sensitivity of
the likelihood function according to 𝜃. The Fisher information matrix of the 𝑘-th task
is given by:

𝐹𝑘 = 𝐸

[︂
𝜕

𝜕𝜇𝑘
ln 𝑝(𝑦|𝑥, 𝜇𝑘) · 𝜕

𝜕𝜇𝑘
ln 𝑝(𝑦|𝑥, 𝜇𝑘)𝑇

]︂
, (3.25)

3. Related Work 36

where 𝑦 ∼ 𝑝(𝑦|𝑥, 𝜇𝑘) and 𝑥 ∼ 𝜋𝑘, with 𝜋𝑘 denoting a empirical distribution of 𝑋𝑘.
The Fisher information matrix is used after each training process to update the trained
parameters according to the previous and current parameter importance measure. This
is done by preserving the previous task parameters and using the fine-tune parameters
according to the new task. During training large updates are prevented through L2
regularization to previous tasks.

3.5.4 Transfer Techniques
In practice they proposed the usage of one of the following transfer learning techniques
to improve learning when switching to a new task: weight-transfer, L2-transfer or drop-
transfer.

Weight-transfer

The IMM paper uses by default weight-transfer for their experiments. This basically ini-
tializes the parameters for task 𝜇𝑘 with the values of the previous parameters 𝜇𝑘−1. This
method interpolates the solutions of multiple tasks on a surface merging all solutions
into one, and allowing the loss function to behave nearly convex. These conclusions were
drawn based on empirical analysis from Goodfellow, Vinyals, and Saxe, 2014, according
to linear path analysis, where each loss and accuracy was evaluated w.r.t. a series of
parameters such that 𝜃 = 𝜃1 +𝛽1(𝜃2−𝜃1)+· · ·+𝛽𝑘−1(𝜃𝑘−𝜃𝑘−1)+· · ·+𝛽𝐾−1(𝜃𝐾−𝜃𝐾−1).

L2-transfer

L2-transfer is a descendant of L2-regularization and can be interpreted as a special
case of EWC, where the prior distribution is a Gaussian with a covariance matrix 𝜆𝐼.
Unlike usual cases, where 𝜆 is chosen relatively high, they apply a very small value for
𝜆, such that it defines a regularization term which smoothens the loss function, defining
a convex-like space between 𝜇𝑘 and 𝜇𝑘−1. This leads to the following objective function:

ℓ(𝜃) = log 𝑝(𝑦𝑘|𝑋𝑘, 𝜇𝑘)− 𝜆 ‖𝜇𝑘 − 𝜇𝑘−1‖
2 . (3.26)

Drop-transfer

Drop-transfer is a variant of dropout, where the zero values are replaced by the values
of 𝜇𝑘−1. During training, 𝑦𝑘,𝑖 replaces the weight vector of 𝑦𝑘,𝑖, such that:

𝑦𝑘,𝑖 =
{︃

𝜇𝑘−1,𝑖 if 𝑖-th node is turned off
1

1−𝑝𝜇𝑘,𝑖 − 𝑝
1−𝑝𝜇𝑘−1,𝑖 otherwise

, (3.27)

where 𝑝 denotes the dropout ration. According to Srivastava et al., 2014, dropout can be
interpreted as an ensemble of weak learners, hence they use this property to smoothen
the transition between tasks, when optimizing w.r.t. the parameters of previous tasks.
This gives them an average oversampled prediction, which they compensate during
testing by multiplying the activations with the inverse of the dropout rate, since the
output distribution of the ensemble is intractable.

3. Related Work 37

The bottom line 3.5.1 Incremental Moment Matching is a very effective method
and offers deep theoretical insights on the geometrical properties when overlapping
the moments while training on different tasks. But the moment mixture of Gaussians
assumption is very strong for a large number of tasks, and training is also limited
to an offline training procedure.

3.6 PathNet

In 2017, DeepMind (Fernando, Banarse, et al., 2017) published a paper which was in-
spired by the Darwinian Neurodynamics designing how evolutionary algorithms might
be implemented in the brain (Fernando, Szathmáry, and Husbands, 2012). Since this
approach is partially determined by combinatorial heuristics, they focused their research
on combining gradient-based optimization of neural networks with the usage of evolu-
tionary algorithms to select the optimal pathways based on a new solution candidate of
the sub-networks population. The layers are divided into smaller layer modules, where
the selected modules form a task-specific network. By searching through multiple gra-
dient optimized parameter populations when learning a new tasks this method showed
not only efficient but also scalable results. Their core motivation is that multiple users
do not have to start training from scratch, but are rather able to train on the same
giant network. It uses the shared knowledge across tasks and finds different paths to
solve a newly defined problem. To enable a distributed search of pathways, evolutionary
based agents are used, which can work in parallel, learning disjoint weight updates and
sharing these weights with other agents.

3.6.1 Modules
PathNet consists of a modular deep neural network having 𝐿 layers, where each layer
has 𝑀 modules. Each module is composed of a neural network, containing convolutional
or linear layers and a transfer function to match the input to outputs between modules.
When forwarding activations through the network, only active modules are selected for
processing, and each module output of a given layer is summed with its companion mod-
ules at the same layer, before passed on to the next active module of the next higher
layer. A module is called active if it is present in the currently evaluated genotype. In
the case of PathNet this is expressed in a matrix which enables feature extractors from
layer modules. Each layer has a limited number of active modules, usually consisting
of 𝑁 = 3 or 4 entries. The final output layer, uses a multi-headed approach containing
linear classifiers for each task respectively. The data structure which represents the ac-
tive genotypes or pathways, is defined as a 𝑁 × 𝐿 dimensional matrix, storing integer
values, for each layer respectively. Evolutionary algorithms are mainly defined by four
phases, known as selection, recombination, mutation and fitness evaluation, they need
to first train the networks and use the established error for the fitness evaluation. Path-
Net defines the selection phase by applying tournament selection, whereas two alleles
compete against each other based on their evaluated fitness. In a broader context the re-
combination phase can be seen as randomly initialized and fine-tuned parameters of the
neural network. The mutation phase is randomly permuting weights of trained networks,
such as dropout or random inductive noise, to ensure a higher population diversity. To

3. Related Work 38

evaluate the fitness, the negative classification error is used at each training step. The
training procedure starts with randomly initializing 𝑃 genotypes for each layer, then
by selecting a genotype at random, and training its pathways for 𝑇 epochs. This is
followed by randomly selecting a second genotype which is also trained for 𝑇 epochs.
Afterwards, a copy of the winning pathways genotype overwrites the pathways of the
losing one, after which it is mutated with a probability of 1

𝑁×𝐿 , which adds an integer in
the range of [−2, 2] to it. Additionally, a local neighborhood search was applied, promot-
ing spacial localization of network functionality. This training and evaluation procedure
can be parallelized, since each worker only operates on its own parameter subset. The
synchronization step is only required to compete in the tournament selection. Unless
workers have finished, they write a large negative fitness value into the shared fitness
array, to avoid being selected. When a worker has finished, it randomly selects 𝐵 other
genotypes and if only one is at least as fit or fitter than the current genotype, it over-
writes its current genotype, otherwise, it continues to evaluate its own genotype. After
a given number of epochs or after reaching a given threshold, the best pathways are
selected for the current task and its weights are then fixed. All other parameters not
relying in an optimal path are reinitialized and the training procedure is repeated for
the next task.

The bottom line 3.6.1 This paper has remarkable transfer learning capabilities,
since it bases its search of optimal solutions on a population of different partially
optimized modules, and where the fitness evaluation can even be computed in paral-
lel. Because avoiding catastrophic forgetting also indirectly implies reuse of previous
knowledge to solve future tasks, we can give great credit to their solution and frame
their approach of being capable of passing on promising solution candidates over
multiple tasks. But the drawback is that it requires a huge amount of computational
resources and has a large memory footprint. Also the performance outcome is based
on non-deterministic heuristics which not always finds an optimal solution. Recon-
structing the same module pathways is very unlikely even with similar initial setups.
In principle neural networks with backpropagation optimization are fully determin-
istic given the same initial conditions.

3.7 PackNet

PackNet (Mallya and Lazebnik, 2017) counters catastrophic forgetting by learning task-
specific sparse filters using network pruning techniques to create free parameters that
can be used to learn future tasks. Given a neural network with 𝑁 number of parameters
𝜃𝑁 , they train it on the first task 𝑡0 with the full parameter set, afterwards prune unim-
portant parameters down to a pre-defined percentage, for example, 60%. The pruned
parameters are then fine-tuned on the same task 𝑡0, and define a sparse filter for task 𝑡0.
Afterwards, the filters are frozen and represent the solution filter for task 𝑡0. For the next
task 𝑡1 they also pre-train the remaining free parameters and then fine-tune the subset.
The forward pass computations include also the previously frozen parameters, but with-
out updating the filter parameters. This procedure is repeated for 𝐾 tasks, learning 𝐾
task-specific filters. Figure 3.5 illustrates the training procedure of the task dependent
filters. The two-step update procedure is necessary to compensate for the higher loss

3. Related Work 39

caused by the applied pruning technique, since changes in the network connectivity has
a high influence on the computed output.

3.7.1 Pruning Procedure
The pruning procedure is applied to the convolutional and fully connected layers accord-
ing to a pre-defined percentage threshold. First, they sort the weights by their absolute
magnitude, and the lower 50 to 75 percent are selected to be removed. For computa-
tional convenience, the a one-shot pruning approach was applied. To ensure stability
of previous performance they only prune weights that are not assigned to previously
trained tasks. The mentioned masks represent a sparse filter which is stored efficiently,
since with an increasing number of tasks the previous task masks are a subset of the
current mask, it requires at most log2(𝑁) number of bits to represent the masks.

3.7.2 Inference
During inference, it is important to notice that the model cannot perform simultaneous
inference on all tasks since the activating units, which did not belong to previously
trained filters, would disturb the resulting output.

Figure 3.5: Illustration of the sequentially trained filters (Mallya and Lazebnik, 2017).

The bottom line 3.7.1 This method is immune to catastrophic forgetting by de-
sign, since the task-specific sparse filters are kept fixed, but it requires an initial
setting for its degree of sparsity and is limited to the fixed sized network capacity.
Nonetheless, the parameter overhead is very small, since they need to add only one
binary parameter selection masks for each task and their training process takes only
1.5× longer compared to fine-tuning, since the second training step is running only
for half the epochs. This is a very simple, yet effective training method to avoid
forgetting on previous tasks and shows great performance on new tasks.

3.8 Hard Attention to the Task

Serrà et al., 2018, proposed Hard Attention to the Task (HAT) that learns features by
applying a hard attention mask to the output units such that

ℎ′
𝑙 = 𝑎𝑙 ⊙ ℎ𝑙, (3.28)

3. Related Work 40

where 𝑙 denotes the current layer, ℎ𝑙 the activations at layer 𝑙 and 𝑡 the current task.
In contrast to regular attention mechanism, where 𝑎𝑡

𝑙 forms a probability distribution
over all tasks 𝑡, they apply a gated version of a single layer task embedding

𝑎𝑡
𝑙 = 𝜎(𝑠𝑒𝑡

𝑙), (3.29)

where 𝜎 defines an arbitrary gating mechanism and 𝑠 a positive scaling factor on all
layers 𝑙 = 1 . . . 𝐿 − 1. The last layer 𝑎𝑡

𝐿 is a binary hard-coded mask according to a
typical multi-head output.

The conducted experiments defined 𝜎 to be a sigmoid gating function, such that the
gating mechanism arises similar behavior as inhibitory synapsis, activating or deacti-
vating different units for each layer. To preserve information over multiple tasks they
conditioned the gradient updates by freezing important weights according to a binary
backward mask. This mask is the inverse of the accumulated attention vector, and ob-
tained by recursively computing the element-wise maximum of the previous bit mask
and the current mask:

𝑎≤𝑡
𝑙 = max(𝑎𝑡

𝑙 , 𝑎≤𝑡−1
𝑙), (3.30)

including the all zero vector 𝑎≤0
𝑙 . The inverse of the minimum of the cumulative update

is applied to each gradient 𝑔𝑙,𝑖,𝑗 at layer 𝑙

𝑔′
𝑙,𝑖,𝑗 = [1−min(𝑎≤𝑡

𝑙,𝑖 , 𝑎≤𝑡
𝑙−1,𝑗)]𝑔𝑙,𝑖,𝑗 , (3.31)

with the indices 𝑖 and 𝑗 corresponding to the units of the output layers 𝑙 and input
layers (𝑙 − 1) respectively.

A desired property of the attention vector 𝑎𝑡
𝑙 is to learn a binary hard attention.

However, the training of the embeddings 𝑒𝑡
𝑙 must remain differentiable. To overcome this

limitation, a scaling factor 𝑠 is introduced which forces the creation of a pseudo-step
function, which enables the hard attention encoding. During training 𝑠 is incrementally
linearly annealed, controlling the plasticity of the gradient flow and during testing 𝑠 =
𝑠max, where 𝑠max ≫ 1, defining 𝑎𝑡

𝑙 to behave almost like a step function. The following
equation shows the annealing scheme of 𝑠 during training:

𝑠 = 1
𝑠max

+
(︂

𝑠max −
1

𝑠max

)︂
𝑏− 1
𝐵 − 1 , (3.32)

whereas 𝑏 = 1 . . . 𝐵 is the batch index and 𝐵 defines the total number of batches in
an epoch. If 𝑠max → ∞ then the attention 𝑎𝑡

𝑙,𝑖 → {0, 1} behaves like a step function,
otherwise if 𝑠max → 0 then this results in 𝑎𝑡

𝑙,𝑖 → 1
2 to enable similar gradient flow as in

a regular sigmoid function.

3.8.1 Embedding Gradient Compensation
By empirically evaluating the results the authors from HAT came to the conclusion
that because of the annealing scheme, the embeddings showed little changes. Without
annealing 𝑠 = 1, after one epoch the cumulative gradient showed a bell shaped curve,
spanning the entire active sigmoid range [−6, 6]. When setting 𝑠 = 𝑠max it resulted in
increasing the magnitude of the cumulative gradient, but decreases the spanning value

3. Related Work 41

Figure 3.6: Illustration of the annealing effect of 𝑠 on the gradients 𝑞 of 𝑒𝑡 (Serrà et al.,
2018).

range. To ensure effective training both properties are required; a high magnitude and
the full active value range of the sigmoid function, as illustrated in Figure 3.6.

By compensating the gradient the actual update is defined as

𝑞′
𝑙,𝑖 =

𝑠max[cosh(𝑠𝑒𝑡
𝑙,𝑖) + 1]

𝑠[cosh(𝑒𝑡
𝑙,𝑖) + 1]

𝑞𝑙,𝑖. (3.33)

To further ensure numerical stability the gradients are clipped at |𝑠𝑒𝑡
𝑙,𝑖| ≤ 50, keeping

𝑒𝑡
𝑙,𝑖 in an active range of the standard sigmoid function 𝑒𝑡

𝑙,𝑖 ∈ [−6, 6].

3.8.2 Promoting Low Capacity
To promote efficient usage of the available network capacity they added a regularization
term to the loss function. Since 𝑎𝑡

𝑙,𝑖 → 1 directly determines the units that will be dedi-
cated to task 𝑡, they can use the set of previous attention vectors 𝐴<𝑡 = {𝑎<𝑡

1 , . . . 𝑎<𝑡
𝐿−1}

and reduce the cost for 𝐴𝑡 = {𝑎𝑡
1, . . . 𝑎𝑡

𝐿−1} if both values overlap. This masking pro-
motes high reusage of existing features and requires a sparse set of additional units per
task. The new loss function is denoted as

ℒ(𝑦, �̂�, 𝐴𝑡, 𝐴<𝑡) = ℒ(𝑦, �̂�) + 𝑐𝑅(𝐴𝑡, 𝐴<𝑡), (3.34)

where 𝑐 ≥ 0 is the regularization constant, which controls the capacity spent on each
task. The regularization term 𝑅 is defined as a L1 regularization over 𝐴𝑡:

𝑅(𝐴𝑡, 𝐴<𝑡) =
∑︀𝐿−1

𝑙=1
∑︀𝑁𝑙

𝑖=1 𝑎𝑡
𝑙,𝑖(1− 𝑎<𝑡

𝑙,𝑖)∑︀𝐿−1
𝑙=1

∑︀𝑁𝑙
𝑖=1 1− 𝑎<𝑡

𝑙,𝑖

, (3.35)

with 𝑁𝑙 defining the number of units in each layer 𝑙 and where the cumulative attentions
over the past tasks 𝐴<𝑡 is promoting reuse of old features.

3. Related Work 42

The bottom line 3.8.1 This method is an effective and compact method to learn
important features per task and prevents forgetting by freezing important weights.
Compared to previously mentioned approaches it does not require major changes to
the network topology as in Progressive Neural Networks. But similar to PackNet,
they cannot perform simultaneous inference since the task-specific gating masks have
to be manually pre-selected.

3.9 Synaptic Intelligence

Zenke, Poole, and Ganguli, 2017, proposed Synaptic Intelligence (SI) to tackle catas-
trophic forgetting which is inspired by the adaptiveness of biological neural networks.
The authors claim that in contrast to biological neural networks, where the plasticity
of neurons is controlled by complex molecular reactions, the artificial counterparts are
modeled to simplistic. ANN neurons require task-specific importance measures which
are used to preserve features, proposing a three-dimensional state space per unit, instead
of a zero-dimensional scalar output. By tracking the previous and current parameter
values and maintaining a local importance estimate 𝜔𝜇

𝑘 for the global contribution of
solving tasks 𝜇, they penalize changes to important parameters 𝜃𝑘 according to a L2
regularization. The effect of catastrophic forgetting can be analyzed in a two-parameter
case with 𝜃1 and 𝜃2 as shown in Figure 3.7. Following the optimization trajectories (black
line) from the initial parameter state 𝜃(𝑡0) towards 𝜃(𝑡1) when training on task 1 and
changing the objective towards task 2, the final state of 𝜃(𝑡2) lies in an optimal region
for task 2 and in a sub-optimal region for task 1. By regularizing the gradient trajecto-
ries while training on task 2 a sub-space can be found where the losses are minimal on
both tasks, similar to Elastic Weight Consolidation. This also generalizes on more than

Figure 3.7: Two parameter example of the trajectory behavior on the fitness landscape.
Blue color indicates little loss and white high loss (Zenke, Poole, and Ganguli, 2017).

two tasks and means that the main goal is to ensure updates that result in a minimal
loss on all tasks. To enable this without knowledge about past tasks, they create a sur-
rogate loss representing all previous losses. The surrogate loss is obtained through the
parameter-based important measure which is tracked during training. Considering the

3. Related Work 43

behavior of the objective function with an infinitesimal parameter update 𝛿(𝑡) at each
time step 𝑡, we can observe that the summed parameter changes of the gradient 𝑔 = 𝜕𝐿

𝜕𝜃
corresponds approximately to the differences in loss:

𝐿(𝜃(𝑡) + 𝛿(𝑡))− 𝐿(𝜃(𝑡)) ≈
∑︁

𝑘

𝑔𝑘(𝑡)𝛿𝑘(𝑡) (3.36)

This basically means that each parameter change directly contributes to the total differ-
ence in loss. By integrating over the task-specific gradient trajectories according to each
update step, we get an importance measure which corresponds to the parameter specific
contribution and can be used to define a regularization term for the new surrogate loss.
Equation 3.37 shows how the loss decomposes as a sum of individual parameters.∫︁ 𝑡

𝜇

𝑡
𝜇−1

𝑔(𝜃(𝑡))𝜃′(𝑡)𝑑𝑡 =
∑︁

𝑘

∫︁ 𝑡
𝜇

𝑡
𝜇−1

𝑔𝑘(𝜃(𝑡))𝜃′
𝑘(𝑡)𝑑𝑡 (3.37)

≡ −
∑︁

𝑘

𝜔𝜇
𝑘 (3.38)

In practice, 𝜔𝜇
𝑘 is approximated as a running sum of parameter changes and negated

since we are interested in minimizing a loss. When training on a new task 𝜇 large
weight updates of important parameters can be prevented by penalizing movements
away from the previous tasks 𝜈 < 𝜇. To obtain the corresponding regularization we
need to renormalize 𝜔𝜈 according to the total parameter changes Δ𝜈

𝑘 ≡ 𝜃𝑘(𝑡𝜈)−𝜃𝑘(𝑡𝜈−1).
The cumulative importance measure Ω𝜇

𝑘 for the regularization of the new task 𝜇 is now
defined as:

Ω𝜇
𝑘 =

∑︁
𝜈<𝜇

𝜔𝜈
𝑘

(Δ𝜈
𝑘)2 + 𝜉

, (3.39)

where 𝜉 represents a damping parameter avoiding zero division terms, and (Δ𝜈
𝑘)2 en-

sures the same units as in the original loss 𝐿. The surrogate loss is now defined as
the original loss 𝐿 including a quadratic loss �̃�, which approximates the summed loss
over all previous tasks 𝐿𝜈(𝜈 < 𝜇). Training on the new surrogate loss should be now
equivalent to training on the original loss. Equation 3.40 shows the surrogate loss when
learning a second task sequentially

�̃�𝜇 = 𝐿𝜇 + 𝑐
∑︁

𝑘

Ω𝜇
𝑘(𝜃𝑘 − 𝜃𝑘)2, (3.40)

where 𝑐 represents how much weight we put on keeping old tasks and the reference
weights are defined as 𝜃𝑘 = 𝜃𝑘(𝑡𝜇−1). Although this approach is only defined for two
tasks, in their paper they can empirically demonstrate that it also works on more than
two tasks. 𝜔𝜇

𝑘 is continuously updated and Ω𝑘 and 𝜃 are updated at the end of training
of each task.

The bottom line 3.9.1 Similar to EWC, the authors from HAT also prove that
consolidation of weights can achieve great results and improve sequential training
significantly. Since it is the only approach keeping an online estimate of the entire

3. Related Work 44

training trajectories (not only point estimates such as in EWC), one can argue that
this is the best choice suited for a reinforcement learning approach.

3.10 Context-Dependent Gating

The authors of Context-Dependent Gating (XdG) focused their research on combin-
ing synaptic stabilization approaches with partial neuron updates (Masse, Grant, and
Freedman, 2018). They analyzed the behavior of neural networks when trained with
the previously mentioned EWC and SI approach in combination with a gating algo-
rithm, which randomly masks neurons w.r.t. to the trained task. The research shows
three measures how the gating strategy affects neurons when trained on multiple tasks
in a sequential manner. XdG helps to significantly reduce catastrophic forgetting when
training on a large amount of tasks≫ 100. The experiments were conducted with a fully
connected neural network with two hidden layers and ReLU activation function. Fig-
ure 3.8 depicts different experimental network gatings while developing their method.
𝐴 represents a two layer fully connected network without any gating, which was only
enhanced by EWC or SI. 𝐵 denotes a partially gated network (activations were mul-
tiplied by 0.5), with randomly chosen gates per neurons (according to a probability of
50%). The selected gates are always preserved and assigned to a corresponding task.
𝐶 illustrates a partially gated network which consists of five sub-networks or modules
and only one module per layer is activated for each task. The number of units for the
su-networks are chosen such that the total number of units adds up to the original
number of units of the full network. The last illustration shows their proposed XdG
network where they apply full gating with either 0 or 1, and again each gating scheme
is assigned to a particular task.

The bottom line 3.10.1 XdG keeps only a partial sub-set of neurons active. In
combination with synaptic stabilization they ensure consolidation of weights and
only apply changes on an unimportant parameter subset.

3. Related Work 45

Figure 3.8: Illustration of the task dependent gating proposed by Masse, Grant, and
Freedman, 2018. A shows a non-gated two layer fully connected network. B a partially
gated network. It is gated by multiplying the activations with 0.5. C splits the layer
parameters in modules and performs partial gating. D performs full gating with a binary
bit mask.

Chapter 4

Comparison

“Bring forward what is true, Write it
so that it is clear, Defend it to your
last breath!“

Ludwig Boltzmann

In the previous chapter, we introduced several approaches to counter the effect
of catastrophic forgetting. In this chapter, we will reflect on the published results and
emphasize the benefits and drawbacks of the different approaches. The following criteria
will be used as a guide to assess the quality of the different approaches:

• Benchmark: Learning versus forgetting
• Representational power of trainable parameters
• Deterministic learning behavior
• Neural plasticity for long term learning
• Online learning capability
• Single versus multi-phase training
• Ability for Context-dependent decision marking
• Simplicity of integration
As a baseline and frame of reference, we will use the framework and forgetting ratio

benchmark introduced by Serrà et al., 2018. Their architecture is based on AlexNet
with 3 convolutional layers of 64, 128, and 256 filters with 4 × 4, 3 × 3, and 2 × 2
kernel sizes, respectively, plus two fully-connected layers of 2048 units each. The last
layer uses a fully-connected multi-head output per task, which is similar to a multi-task
setup. While sequentially training on each task, the amount of forgetting is measured
according to the forgetting ratio, which not only considers the accuracy of the current
task, but also accuracy drops in past tasks. All weights except of the last layer are either
shared or manipulated according to the proposed methods. The datasets are CIFAR-
10 and CIFAR-100, since they are visualizable, human interpretable, and represent a
certain degree of learning difficulty. We train on these datasets in an incremental way
as proposed by Lopez-Paz and Ranzato, 2017. The group size of each dataset CIFAR-10
and CIFAR-100 is chosen as proposed by Serrà et al., 2018. We randomly select five
times two classes from CIFAR-10 and five times twenty classes from CIFAR-100. The

46

4. Comparison 47

training sequence is chosen according to a random seed. This setup ensures a certain
level of difficulty, but remains trainable in a reasonable amount of time on a single GPU.
Other proposed benchmarks used either too simplistic datasets, such as MNIST, or too
idealistic training sequences, helping to solve future tasks after training the first task.

4.0.1 Forgetting Ratio
In contrast to the often used average mean accuracy of all tasks, the forgetting ratio
focuses on both forgetting of previous tasks and adaptiveness towards the newest tasks.
The average mean accuracy is biased according to its outlier-performance and does not
reflect the sensitivity versus stability of learning. To receive a plottable scalar value for
the forgetting quantity after each sequentially learned task, we use the forgetting ratio
proposed by Serrà et al., 2018:

𝜌𝜏≤𝑡 = 𝐴𝜏≤𝑡 −𝐴𝜏
𝑅

𝐴𝜏≤𝑡
𝐽 −𝐴𝜏

𝑅

− 1, (4.1)

where 𝐴𝜏≤𝑡 is the accuracy measured on all tasks 𝜏 ≤ 𝑡 after sequentially learning
task 𝑡, 𝐴𝜏

𝑅 is the accuracy of the random stratified classifier and 𝐴𝜏≤𝑡
𝐽 is the accuracy

measured on the jointly learned multi-task setting. 𝜌𝜏≤𝑡 measures the accuracy of all
tasks up until task 𝑡. To obtain the forgetting ratio (1) we need to train our models
w.r.t. the approach we want to evaluate, (2) train the basic architecture on a joint data
set version using Stochastic Gradient Descent (SGD) and (3) create randomly generated
stratified classifier. To receive a single scalar value per task we then compute:

𝜌≤𝑡 = 1
𝑡

𝑡∑︁
𝜏=1

𝜌𝜏≤𝑡. (4.2)

4.0.2 Analysis
At first, the introduced complexity of the listed approaches from chapter 3 might seem
questionable and may suggest a more novel setting to counter catastrophic forgetting.
One such example is based on differently scaled learning rates. Assuming a neural net-
work with a small learning rate in the lower layers and a high learning rate in the last
layer, where the last layer is shared across all tasks, this setup is object to forgetting,
because no objective is embedded preventing destructive updates while learning new
information. All weight settings will optimize towards the new objective and overwrite
important features of previous tasks. The net effect is similar to learning plain SGD with
a multi-head output. Over long training sequences old tasks will be forgotten regard-
less of the scale of the learning rate. LFL and LWF are more elaborate alternatives to
altering learning rates, since they penalizes updates moving away from previous tasks.
In Figure 4.1 we present an overview of the benchmark results from Serrà et al., 2018.
We can see that HAT outperforms all approaches w.r.t. the forgetting ratio. We can
also see that LFL and LWF are performing poorly, since freezing classifier weights and
fine-tuning distributions that are not originating from the actual dataset does not pre-
vent forgetting. Furthermore, the objective of LFL and LWF is not representative for a
sequential learning setting. SGD alone is also forgetting older tasks continuously, since

4. Comparison 48

Figure 4.1: Forgetting ratio comparing the different approaches. PackNet, Synaptic In-
telligence and Context-Dependent Gating is not shown, since the authors of HAT did not
evaluate these algorithms. SGD-F is plain SGD with fine-tuning of the last layer (Serrà
et al., 2018).

it does not include any objective to prevent destructive updates. What is not directly
shown by the forgetting ratio, is that not only old tasks are disrupted, but also the
representational power of some tasks may be reduced. This can only be detected when
observing the relative accuracies compared to SGD. SGD is a good reference point for
the current tasks, since it learns unrestricted on the current objective, but only per-
forms well on multiple tasks if they are similar to each other. This is also the effect
why the confidence intervals in Figure 4.1 sometimes become larger or narrower after
training on a new task. However, regularizing the representational power of the models
is only constructive if it occurs in a goal-oriented manner and ensures that task-specific
parameters are preserved. This is also one of the key criteria why incremental moment
matching shares the forgetting ratio similar to SGD, since averaging the moments of dif-
ferent tasks only preserves common features without prioritizing task-specific settings.
EWC and SI trace the importance of individual weights by using either the Fisher in-
formation matrix or the path integral, and penalizes updates that would be destructive
to previous tasks. These type of algorithms use structural regularization to update only
specific parameters. If we observe the continuous learning capability of EWC to compute
the Fisher information matrix, we notice that it requires a second optimization phase,
as it is a pointwise estimate of the importance by forwarding the task-specific training
samples through the network. This limits the capability of online learning applications,
especially in a Reinforcement Learning setting, since we need to forward the entire state
space to asses the importance measure to consolidate the weights. In Figure 4.1 we can
see that EWC outperforms SGD, however, slightly under-performing PathNet, PNN
and HAT. This is partially caused by the overestimation of the importance parameter
and hence over-regularization.

PathNet’s implementation is based on evolutionary algorithms, which selects and

4. Comparison 49

combines layer-wise modules to learn new tasks. The setup of PathNet is similar to
having multiple neural networks permuted and refined according to the selection criteria.
This, of course, gives higher scores to match parameter constellations and improves
the overall performance by updating only selective parts of the subset. However, using
heuristics in a second stage update phase, not only introduces non-deterministic learning
behavior but also requires higher computational expense. In analogy, this is similar to
training 𝑛 subsets of independent neural networks and exchanging weights between
tasks, which seem to give promising results. From an online learning perspective, this
computational overhead is not desirable. Furthermore, it requires external instructions
to select the correct modules for inference. In fact, this issue is the same across all
methods that share task-dependent weights for inference. HAT might outperform all
methods, but it also requires the selection of task-dependent embeddings. This is a
huge drawback from a continuous learning perspective since without knowledge of the
correct context, one has to forward the input multiple times through the network and
can only guess according to the maximum achieved scores to which class the current
task belongs. The inference time also increases proportionally to the number of tasks.

Progressive Neural Networks (PNN) are by definition immune against catastrophic
forgetting, since freezing weights of a trained network and extending it by lateral con-
nections towards new weights avoids forgetting entirely, but also requires a pre-selection
of the correct column for inference. An additional cost of PNNs relies upon the quickly
growing number of parameters and destructive interference of activations. Assuming
that two datasets are mutually exclusive, the network first needs to learn to suppress
the destructive lateral signals and then learn the important task-specific features. This
issue relates to the aspect of neural plasticity. Freezing weights is preventing destructive
updates, but also prohibits constructive adaption of new tasks. For PNN this results
in an increasing demand for additional weights. In comparison to HAT this sets an up-
per bound for the number of learnable tasks. HAT freezes important weights by using a
backward hard attention mask to prevent destructive updates while training on the new
objective. These masks are created during the forward pass and bitwise maximized with
the total collection of masks from previous tasks. Their intend is to keep the creation of
masks minimal per task, to ensure enough free capacity for future tasks. This reduction
of available weights continues gradually if a good compression regularization is applied,
but will eventually result in an exhaustion of neural plasticity. According to the authors
of HAT, the plasticity of the neurons can be regained by unfreezing the bits of the back-
ward mask, but according to experiments shown in chapter 6, such updates result in
catastrophic forgetting of old tasks. The reason is that no other regularization technique
is available to prevent destructive updates. If the weight distributions change, multi-
ple tasks can be affected, which require proper matches of the hard attention masks.
Furthermore, this method also requires a fixed knowledge about the desired embedding
size, which is in conflict with continuous learning since we do not know in advance how
many tasks we might want to learn. Changing the embedding size later requires full
retraining of all tasks.

In theory, all methods except PNN are affected by the limitation of having to learn
an infinite number of tasks with a finite number of parameters. The issue is rooted in
the inability to introduce new weights without disrupting computations. In addition,
switching between the task context avoids disrupting the computation of previous tasks,

4. Comparison 50

but requires external interaction to chose the correct context regarding inference. These
context-dependent inference problems also restricts the capability of an online learning
settings. This favors synaptic stabilization based algorithms, such as SI and EWC and
increases the demand to improve their performance. Since the paper of Serrà et al., 2018,
did not offer a direct comparison between SI with EWC, we reconstructed the results in
Figure 4.2 and additionally added the absolute performance in Figure 4.3 after training
10 tasks in a sequential manner relative to the baseline of SGD and HAT. Here we

Figure 4.2: Forgetting ratio of Synaptic Intelligence (SI), Elastic Weight Consolidation
(EWC), Hard Attention to the Task (HAT), Stochastic Gradient Descent with Dropout
(SGD), and SGD with frozen weights (SGD-F) with a 95% confidence interval that the
values rely within the shaded areas. The experiments are averaged over six random seeds.

Figure 4.3: Accuracy plot after training SI, EWC, HAT and SGD in a sequential manner
on 10 tasks. Red dashed lines at 50% and 5% mark the levels of randomly classifying classes
by chance for CIFAR-10 with task size of two classes (C10-2) and CIFAR-100 with task
size of 20 classes (C100-20) respectively. The error bars are computed according to the
standard error of the mean based on four runs with a fixed seed.

4. Comparison 51

can see that SGD and HAT are much more adaptive to learning current task features.
HAT performs very well on old tasks, but SI and EWC are stable across long training
sequences. SGD-F performs worst, which does not forget any features but never adapts
to new tasks properly. We also added the confidence intervals, which indicate volatility
when training according to the expressiveness of the first tasks. If the first tasks includes
features valid across multiple tasks, higher performance can be expected and vice versa.
The main issue why EWC and SI performs worse compared to HAT relates not directly
to forgetting, but due to the overestimated importance of parameters and, therefore,
overregularization of new tasks. This means, they do not adapt to new tasks as easily
as HAT and have a greater performance margin to the maximum possible task. Masse,
Grant, and Freedman, 2018, showed that synaptic stabilization methods can improve
with the issue of overestimated penalization by partially or fully gating neurons. This
improves the absolute accuracy per task, but introduces the necessity to predetermine
the context before inference. Their paper also emphasizes that the methods with the
greatest potential to learn long term sequences are based on synaptic stabilization and
not freezing parameters. The issue, how to improve assessing the parameter importance
and receive the corresponding context during inference, remains. Apart from predeter-
mining the context, Context-Dependent Gating (XdG) uses randomly created masks per
task, and introduce another hyperparameter, specifying the percentage for the minimum
amount of units to mask, similar to PackNet.

From an implementation point of view, PNN and PathNet introduce the highest
complexity by requiring changes to the network architecture. This might be only a
technical problem and is not relevant from a scientific point of view, but introduces
limitations when trying to apply the methods on more elaborate architectures apart
from AlexNet. The simplest and most effective adaption is based on synaptic stabiliza-
tion since the changes mainly apply at the optimization criteria and the tracking of
importance from gradients gradient.

The bottom line 4.0.1 Synaptic stabilization algorithms perform best according
to the trade-off between neural plasticity versus forgetting, but overestimate the im-
portance of parameters. Context-dependent methods achieve high scores by better
adapting the new task specific features, but require external context information for
inference.

Chapter 5

Context-Dependent Activations

“People think that computer science
is the art of geniuses but the actual
reality is the opposite, just many
people doing things that build on
eachother, like a wall of mini stones.“

Donald Knuth

This chapter represents the main part of the thesis and introduces our method
denoted as Context-Dependent Activations (XdA). As Context-Dependent Activations,
we understand a non-linearity function that dynamically rectifies activations according
to a trainable threshold.

5.1 Concept

The previous chapters demonstrated that EWC (Kirkpatrick et al., 2017) and SI (Zenke,
Poole, and Ganguli, 2017) are fundamentally good at learning new tasks and remain
stable towards previously learned tasks. Their main drawback is the overestimated pa-
rameter importance, which restricts learning of new objectives in comparison to plain
SGD or HAT (Serrà et al., 2018). We could reduce this by adding XdG (Masse, Grant,
and Freedman, 2018) and, thereby, compensate the amount of involved parameters caus-
ing destructive interference. When evaluating the model, this change requires external
knowledge of the context, which we want to avoid. Furthermore, in a continuous learning
environment one needs to learn a large number of tasks, such that it becomes possi-
ble to dynamically extend the representational power of the model by introducing new
parameters. In brief, we can summarize our requirements as:

• Increasing the performance for learning new tasks
• Enable dynamic parameter extensibility
• Perform context-dependent updates
• Enable self-selective context prediction
• Remain online learning capable

52

5. Context-Dependent Activations 53

5.2 Context-Dependent Activations
To increase the performance, we want to use a gating mechanism similar to XdG, which
reduces the number of activations. But randomly generating binary bit masks to filter
activations has the limitation that the masks become non-differentiable. The key aspect
is to define a gating operation, which is first-order differentiable. HAT uses a trick to
create a pseudo-step-function by scaling the embeddings with a hyperparameter 𝑠mas
and a sigmoid operation, which remains fully differentiable. The embeddings are inde-
pendent of the input space and act as a fixpoint for the activation space. During the
backward pass, the authors from HAT compensate for 𝑠max by rescaling the gradients
of the embeddings (Serrà et al., 2018).

If we analyze neural network operations excluding Dropout, the main operations are
weighted summations at the neuron level, followed by a non-linearity function—often
ReLU—and in cases with attention, a gating function. The ReLU activation function
rectifies negative values to zero and maps positive values to its identity. This, by design,
biases the activation space towards positive values as shown in Figure 5.1.

Figure 5.1: ReLU activation function.

If the activation function is followed by an attention mechanism, then the set of
forwarded activations is reduced and operative updates are sparse. The threshold pa-
rameters of the non-linearity function must behave as rectifying fixpoint during the
forward pass, but remain differentiable during the backward pass. This not only in-
creases the representational power by allowing negative values, but also enables the
network to determine important parameters. Such dynamically gated activations we
define as Context-Dependent Activations (XdA) and Figure 5.2 illustrates the function
behavior.

The illustrated thresholds in Figure 5.2 must be trainable, hence differentiable, which
we will formally define in the next section.

5.3 Activation Threshold
To reduce the overestimation of parameters we need to train a threshold that filters
activations and forwards only important values. The reduction of activations improves
synaptic stabilization methods as shown by Masse, Grant, and Freedman, 2018, since

5. Context-Dependent Activations 54

Figure 5.2: Two XdA activation functions, with the first example showing a negative
threshold and the second example a positive threshold. All values below the threshold
are set to zero, all above are mapped through the identity function. The function is not
differentiable at the threshold point, similar to ReLU, but in practice, this is not an issue.

only a smaller subset of parameters is updated. During our initial evaluation, we experi-
mented with a novel variant of the ReLU function defined as 𝑓(𝑥) = max(𝑥−𝜙, 0), where
𝑥 denotes the pre-activations and 𝜙 the trainable threshold to enabled a context-based
filtering. The resulting non-linearity mainly differs from ReLUs according to the sub-
traction of the threshold 𝜙. We observed that backpropagating an error signal through
𝜙 offers only good performance on the current task, but does not prevent forgetting
on older tasks. Moreover, the active value range of the activations was relatively small
and left-skewed above zero according to the max operation as described in section 5.6.
To enable a larger value range and ensure that 𝜙 improves the activations filtering,
we wanted to allow negative values after the non-linearity and diverge 𝜙 relative to a
secondary parameter fixpoint. Figure 5.2 illustrates the variable threshold 𝜙.

According to our requirements we define the context-dependent operations to per-
form actions on the activation space ℎ ∈ R𝑏×𝑛, where 𝑏 refers to the batch size and
𝑛 to the number of activations. The activations ℎ are gated according to a trainable
parameter set 𝜙 ∈ ℋ, where ℋ ∈ R𝑛. 𝜙 marks the trainable parameters. By shifting
the values of 𝜙 or processing different values of the activation space ℎ, we can filter
activations such that values are forwarded as an identity or set to zero. To realize this
behavior during the forward pass we use an auxiliary binary mask 𝑎 ∈ {0, 1}𝑏×𝑛 which
is computed for each layer by assigning

𝑎𝑖
𝑘 ← ℎ𝑖

𝑘 ≥ 𝜙𝑘, (5.1)

where 𝑘 denotes the current layer, 𝑖 represents the 𝑖-th element from the batch 𝑏 and 𝑡
the current task or threshold context. Now we can perform the Hadarmard product on
the activation space and obtain a gated identity

ℎ′
𝑘 ← 𝑎𝑘 ⊙ ℎ𝑘 (5.2)

where we forward ℎ′
𝑘 to the next layer. In addition to 𝜙 we track the moving average

of the batches by introducing an additional variable 𝜇 ∈ ℋ. The initial values of the
task-dependent parameters 𝜙

(0)
𝑘,𝑡 and 𝜇

(0)
𝑘,𝑡 are set during the first forward pass according

5. Context-Dependent Activations 55

to the task-dependent mean activations of the first batch ℎ̄
(0)
𝑘,𝑡 ∈ ℋ such that

𝜙
(0)
𝑘,𝑡 = 𝜇

(0)
𝑘,𝑡 = ℎ̄

(0)
𝑘,𝑡 . (5.3)

For each additional training step the exponential moving average of the mean activations
is tracked via

𝜇𝑘,𝑡 ← 𝛼𝜇𝑘,𝑡 + (1− 𝛼)ℎ̄𝑘,𝑡, (5.4)

where 𝛼 denotes the exponential decay.

5.4 Regularization
Since we used a non-differentiable operation during the forward pass to obtain the hard
attention mask 𝑎𝑘, we need to establish an alternative gradient pathway to make 𝜙
trainable. 𝜙 becomes differentiable by using the moving average of the activations 𝜇
and extending our loss function with an additional regularization term ℛ𝐵:

ℒ(𝜃, 𝜙) = ℒ𝐵(𝜃, 𝜙) + 𝜆1ℛ𝐴(𝜃) + 𝜆2ℛ𝐵(𝜙), (5.5)

where 𝜆1 and 𝜆2 are dimensionless scaling hyperparameter for each regularization re-
spectively. The structure of the objective from equation 5.5 is almost identical to EWC
or SI, since it uses an expression to optimize on the current objective denoted as ℒ𝐵

(task 𝐵) and a regularization term for synaptic stabilization ℛ𝐴 ∈ R according to the
previous task 𝐴 as shown in section 3.2 and 3.9. The added regularization term ℛ𝐵 is
used to maximize the absolute distance between the trainable parameters 𝜙 and the
activation mean 𝜇 such that

ℛ𝐵(𝜙) =
∑︁

𝑘

𝛾

𝑠𝑘

∑︀
𝑖 |𝜙𝑘,𝑖 − 𝜇𝑘,𝑖|+ 𝛾

, (5.6)

where 𝑘 denotes the layer, 𝑡 the current task, 𝛾 a dimensionless factor to stabilize the cost
and 𝑠𝑘 a layer-wise hyperparameter to define the weighted importance of each layer. The
net effect from this regularization is, that by maximizing the distance between 𝜙 and 𝜇
we minimize the loss w.r.t. 𝜙. Maximizing according to the first norm also emphasizes
sparsity in the activation space. Furthermore, by adding ℛ𝐵 to our new loss function,
we introduced an interesting effect during training. We optimize two parameter sets 𝜃
and 𝜙 by alternating between them. When optimizing for ℒ𝐵, 𝜙 remains unchanged,
behaving as a fixpoint and only the mean is updated. When optimizing for ℛ𝐵, 𝜙
maximizes its distance according to the unchanging mean. This training behavior is
similar to Generative Adversarial Networks (GANs) proposed by Goodfellow, Pouget-
Abadie, et al., 2014, where two networks play a game against each other until they reach
a Nash equilibrium. In case of 𝜙 the training will stop after the distance reaches a local
maximum, since increasing the distance between 𝜙 and 𝜇 behaves equivalent to 1

𝑥 .
To ensure parameter stability, we analyze the convergence behavior of the additional

cost term by computing the Jacobian. The first order derivative of ℛ𝐵 w.r.t. 𝜙 is given

5. Context-Dependent Activations 56

in equation 5.7.

𝜕

𝜕𝜙
ℛ𝐵(𝜙) = 𝛾

∑︁
𝑘

𝜕

𝜕𝜙𝑘

[︂
1

𝛾 + 𝑠𝑘

∑︀
𝑖 |𝜙𝑘,𝑖 − 𝜇𝑘,𝑖|

]︂
(5.7)

= −𝛾
∑︁

𝑘

𝑠𝑘

∑︀
𝑖

𝜕
𝜕𝜙𝑘,𝑖
|𝜙𝑘,𝑖 − 𝜇𝑘,𝑖|(︀

𝛾 + 𝑠𝑘

∑︀
𝑖 |𝜙𝑘,𝑖 − 𝜇𝑘,𝑖|

)︀2 (5.8)

= −𝛾
∑︁

𝑘

𝑠𝑘

∑︀
𝑖

𝜙𝑘,𝑖−𝜇𝑘,𝑖

|𝜙𝑘,𝑖−𝜇𝑘,𝑖|(︀
𝛾 + 𝑠𝑘

∑︀
𝑖 |𝜙𝑘,𝑖 − 𝜇𝑘,𝑖|

)︀2 . (5.9)

The asymptotic behavior of equation 5.9 is that with the increasing distance between 𝜙
and 𝜇 the gradient decays in a quadratic manner, stabilizing the fluctuating behavior
of the regularization term, which is caused by the absolute value in the numerator. This
derivation also proofs that the threshold parameters 𝜙 will always approach a fixpoint
and settle to a stable state. We can empirically show how the regularization term behaves
according to the maximization of distances between 𝜙 and 𝜇. Figure 5.3 plots the
saturation behavior measured by summing the absolute layer distances and shows that
the layer distances decay over time and stabilize after a certain number of iterations. This
further proofs that the XdA regularization term based on 𝜙 is guaranteed to converge. In
addition, Figure 5.3 shows that by increasing the regularization constant 𝜆2 the training
time is delayed and that the absolute distance between 𝜙 and 𝜇 further increases. In
terms of accuracy, the model that was longer trained also improved noticeably, which
we will analyze in the subsequent experiments in chapter 6.

Figure 5.3: Saturation behavior of the AlexNet layers. c1, c2, c3 relates to the first,
second and third convolutional layer and fc1, fc2 to the first and second fully connected
layer respectively. Orange: without regularization 𝜆2 = 0. Pink: With high regularization
𝜆2 = 100.0 and 𝛾 = 1e3.

To observe the distribution behavior of the threshold parameters 𝜙 in contrast to

5. Context-Dependent Activations 57

the means 𝜇, Figure 5.4 compares the magnitudes of the first four network layers at
different time steps. This demonstrates that the values are in the same active range

Figure 5.4: 𝜙 vs. 𝜇 distribution of the layers (c1, c2, c3 and fc1) with 𝜆2 = 1.0 and
𝛾 = 1e3.

and normally distributed around zero, which is expected since all values are normalized
before being processed as described in section 5.6.

In XdG we saw that for each task a different binary mask was selected, which
altered the parameter updates according to the provided context. The effect of selecting
only a subset of parameters for further computations, reduced disruptive interference
of activations during the forward pass and destructive updates during the backward
pass. It created the notion of task-dependent parameters. To relate equation 5.6 of
XdA with XdG we can define a task-dependent regularization term ℛ(𝜙𝑡) according to
task-dependent thresholds and moving average parameters

ℛ(𝜙𝑡) =
∑︁

𝑘

𝛾

𝑠𝑘

∑︀
𝑖 |𝜙

𝑡
𝑘,𝑖 − 𝜇𝑡

𝑘,𝑖|+ 𝛾
. (5.10)

This allows us to introduce new trainable parameters without disrupting previous tasks,
but it introduces the issue of selecting the proper context for a task. If we need prior
knowledge to manually pre-determine the correct context before inference, then the
inference of a task becomes obsolete. In section 5.5 we present a novel method to counter
this issue, by allowing XdA to self-predict its current task.

5.4.1 Memory Footprint

The introduced task-dependent parameters 𝜙𝑡 show a relative low memory footprint
compared to already existing network parameters 𝜃. Adding one parameter per activa-
tion value is proportionally cheap and resulted for our AlexNet architecture in a total
parameter increase of approx. 2.5 percent per task.

5. Context-Dependent Activations 58

5.5 Self-Task Prediction

If we introduce task-dependent trainable parameters 𝜙𝑡 we also introduce the issue
of requiring knowledge of task 𝑡 to pre-determine the correct threshold context. HAT,
XdG, PNN, PathNet, and PackNet all require external information to select the correct
task. To ensure the benefits of synaptic stabilization, we propose self-task inference by
observing the activation space ℎ. Since the activation space is normalized according to its
first and second moments using layer normalization, we can ensure similar magnitudes
to compare the vectors. To compare the vectors we propose two variations.

5.5.1 Absolute Difference
We can apply the summed absolute difference as a metric to determine the context
during the forward pass. When computing the distance between the activation vector
and the task-dependent means 𝜇𝑡, we predict the task 𝑡 for each layer 𝑘 by selecting
the argument with the lowest error as shown in equation 5.11.

𝑡 = argmin
𝑡

∑︁
𝑖

|ℎ𝑘,𝑖 − 𝜇𝑡
𝑘,𝑖|, (5.11)

where ℎ𝑖
𝑘 is the 𝑖-th activation of the 𝑘-th layer and 𝜇𝑡

𝑘 the mean activation of the 𝑡-th
task. The experimental results regarding self-task prediction will be further discussed
in chapter 6.

5.5.2 Cosine Similarity
As an alternative to the summed absolute distance metric we can use the cosine simi-
larity and select the task which maximizes the score:

𝑡 = argmax
𝑡

∑︀
𝑖 ℎ𝑘,𝑖𝜇

𝑡
𝑘,𝑖√︁∑︀

𝑖(ℎ𝑘,𝑖)2
√︁∑︀

𝑖(𝜇
𝑡
𝑘,𝑖)2

. (5.12)

This method is computationally more expensive, but also offered more stable results 6.

5.5.3 Runtime Complexity
The runtime complexity for computing the metrics during the forward pass is 𝒪(𝑏*𝑘*𝑡),
where 𝑏 is the number of batch samples, 𝑘 denotes the number of layers and 𝑡 the number
of tasks. Since 𝑘 remains constant the computational demand grows linear according
to the number of tasks. Although we stated that 𝑡 is computed per batch sample, in
practice, we implemented a batch-wise average for tests computing the forgetting ratio
in chapter 6. For a very large number of tasks, we further propose to pre-compute hashes
from the activation space and perform the similarity computation on a smaller subset.

5.6 Activation Normalization
To ensure numerical stability and to improve self-task prediction, we want to avoid
the overestimation of outliers according to different magnitudes in the activation space.

5. Context-Dependent Activations 59

Therefore, we normalize the activation space according to the LayerNorm operation
proposed by Ba, Kiros, and Hinton, 2016, before computing the layer means 𝜇, ensuring
leveled value ranges. LayerNorm can be applied with and without additional parameters.
We apply the parameterless approach. Using TensorBoard we show in Figure 5.5 that
of distribution of the activation space after the normalization for different time steps
during training. Although the distribution is slightly left-skewed, we can see that the
values are positively and negatively distributed. This is the case, because we mask away
values below a certain threshold and the range of values above this threshold is unbound.
If we observe the higher layers, we see that in the beginning, the distributions are wider
spread and continuously contract to a more spiked setting. This is partially caused by
the gating function and by fine-tuning the parameters during training.

Figure 5.5: XdA activation distribution of CIFAR10 classes according to the convolu-
tional (c1, c2, c3) and fully connected layers (fc1, fc2).

To compare the behavior of the ReLU and the XdA activation functions, we plot
the distribution of activations in Figure 5.6. We can see that the ReLU activations are
slightly left-skewed above zero and decay quickly afterwards, since all negative values are
cut off. The more interesting aspect is the value range of ReLU since it is hardly above
0.5, which has indirect implications on the magnitude of the gradients. XdA offers a
much larger value range since it implicitly uses normalization in addition to the identity
mapping, which helps distribute values in both numerical directions. Furthermore, we
have a direct connection to the loss function which also improves the gradient flow for
the weight updates of 𝜙, ensuring longer training periods and allowing deeper network
structures. Additionally, it is interesting to see that the distribution of XdA at layer
fc1, offers a wider flattened range after the spiked activation values centered around
zero. It is assumed to occur since this layer correlates all the activations from the last
convolutional layer (c3).

Figure 5.7 shows how XdA benefits from the usage of LayerNorm, because without
LayerNorm the distribution of the moving averages shifts drastically during the training

5. Context-Dependent Activations 60

Figure 5.6: ReLUs activation distribution of CIFAR10 classes according to the convolu-
tional (c1, c2, c3) and fully connected layers (fc1, fc2).

steps, before it settles to a stable fixpoint. This shift has an impact on the training of 𝜙
since it is initialized according to the first batch and may result in a local optimum while
the actual mean moves away uncontrolled. This shift not only introduces a lot of noise
during training, but while evaluating the models it reduced the overall performance,
converging the threshold parameters into a pre-mature local minima. What we can see
is that the trainable thresholds are similarly distributed with and without LayerNorm,
and that only the magnitudes differ between both methods.

Finally, we analyzed the distribution of the activation means of XdA with LayerNorm
and ReLUs with LayerNorm to show that the beneficial distribution of values of XdA
does not solely rely on the LayerNorm transformation. Figure 5.8 shows XdA with
LayerNorm and ReLU with LayerNorm. This illustrates that the value range of 𝜇 is
much larger for XdA compared to ReLU and emphasizes that LayerNorm is better
performing with XdA, which not only improves the gradient flow of the neural network,
but also offers better overall performance as we will show in the next chapter.

The bottom line 5.6.1 In this chapter, we presented an alternative non-linearity
function which in combination with synaptic stabilization methods not only improves
the state-of-the-art benchmark results to overcome catastrophic forgetting, but also
resembles a new tool for neural network architectures.

5. Context-Dependent Activations 61

Figure 5.7: This diagram shows the shift of 𝜇 from the convolutional layers and the
trainable thresholds 𝜙. Orange: XdA with LayerNorm; Blue: XdA without LayerNorm.

Figure 5.8: This diagram compares the shift of 𝜇 from the convolutional layers and the
first fully connected layer. Orange: XdA with LayerNorm; Green: ReLU with LayerNorm.

Chapter 6

Experiments

“Intelligence is the ability to adapt to
change.“

Stephen Hawking

The previous chapter 5 explained the application and the training procedure of
context-dependent activations. Furthermore, if it analyzed the behavior of the means
𝜇 and trainable threshold parameters 𝜙. In this chapter we will focus on the training
benchmarks and improvements relative the HAT and variations of XdA.

6.1 Setup
To define a comparable baseline, we use the AlexNet architecture with Dropout, which
was introduced in subsection 2.4.1. The layers of the neural network are initialized
according to the PyTorch defaults, which are Xavier uniform distribution Glorot and
Bengio, 2010. To remain comparable, we constrain the number of parameters for all
methods to remain within the range of 6.7 to 7.6 million parameters. The datasets are
CIFAR-10 and CIFAR-100, where we break out 10 tasks with five tasks per dataset
as proposed by Lopez and Ranzato Lopez-Paz and Ranzato, 2017. For CIFAR-10 this
means we randomly chose five times two classes and for CIFAR-100 we use twenty-five
times twenty classes. We also alter between CIFAR-10 and CIFAR-100 tasks according to
a random seed which we define during the initialization phase. The dataset is normalized
before it is feed to the neural network according to the means (125.3, 123.0, 113.9) and
the standard deviations (63.0, 62.1, 66.7) for each RGB channel respectively. The chosen
optimizer is based on Stochastic Gradient Descent (SGD) with a learning rate of 0.05
and no momentum, because we are only interested in the native update and convergence
behavior. We let the learning rate decay by a factor of three if no improvements were
achieved after five epochs. The training of a task is stopped if a method exceeds 200
epochs or the learning rate decays below 1e−4. As a reference, we trained models using
plain SGD, SGD with frozen layers except of the last classifier (SGD-F), EWC, SI and
HAT. We will chart the results relative to the results obtained by the XdA improvements
and highlight different aspects in the subsequent sections. The following tests were
computed with six random seeds, which are indicated by the confidence intervals at

62

6. Experiments 63

the respective charts. The results are averaged to a mean point-wise score to ease the
comparison between the presented methods.

6.2 Baseline

6.2.1 Method Comparison
The first Figure 6.1 covers the forgetting ratio of the XdA enhanced synaptic stabiliza-
tion methods. We use a similar setup to HAT, where each task has its own task-specific
threshold parameter 𝜙𝑡 and the parameters are manually selected when switching be-
tween tasks. The calculation of the forgetting ratio was introduced in subsection 4.0.1
and determines how much a method can adapt to new information without forgetting
previous tasks. The closer the values are to zero the better the score. The black dashed

Figure 6.1: Forgetting ratio for SGD, SGD-F, SGD with multi-task, EWC, SI, HAT and
XdA improved EWC and SI with a 95% confidence interval that the values rely within
the shaded areas. The experiments are averaged over six random seeds.

line represents a model jointly trained on the all data samples using SGD, determining
the maximum achievable score. Although the dashed line marks the maximum, both
XdA approaches start slightly above this line at the first task. This is not an error, but
shows the effect of context-dependent activation on plain SGD, since no regularization
is applied and the optimizer can learn unrestricted. Additionally we can see that the
confidence intervals become more narrow the better an approach handles forgetting and
adapts to new tasks. This is congruent with our intuition, because a model that be-
haves sensitive to new information and forgets previous information provides different
outcomes for multiple runs with different randomized seeds. This results in an increas-

6. Experiments 64

ing score variance and the learning process becomes order dependent. SGD-F has the
greatest variance and HAT shows the lowest variance during training. XdA improves
both EWC and SI. SI is preferred, since it is applicable to online learning problems.
HAT still outperforms both, but as the subsequent sections will show, this not always
the case.

Although the forgetting ratio provides a good metric to compare the sensitivity
versus stability of the individual models, it masks the absolute accuracies and removes
the intuition of the actual task performances. To indicate the absolute accuracies and to
get a more representative visualization of the individual task performances we plotted
the 10 task accuracies in a bar chart as shown in the figures 6.3, 6.4 and 6.2. The
tasks were trained in a sequential manner on a pre-defined seed and compare SI and
EWC with and without XdA. After learning the 10th task we can, for example, see that
the accuracy of SGD on the first task (1:C10-2) is almost random, since 50% marks
the chance level for two classes on CIFAR-10. As we see in Figure 6.2, freezing the

Figure 6.2: Absolute accuracies comparing SGD and SGD-F to SI-XdA and EWC-XdA
after training 10 tasks sequentially. C10-2 denotes CIFAR-10 with 2 classes per task and
C100-20 denotes CIFAR-100 with 20 classes per task. The 50% and 5% dashed red lines
mark the random chance levels for CIFAR-10 and CIFAR-100 respectively. The error bars
are computed according to the standard error of the mean based on four runs with a fixed
seed.

Figure 6.3: Absolute accuracies comparing SI and SI XdA with HAT and SGD. The
error bars are computed according to the standard error of the mean based on four runs
with a fixed seed.

weights prevents forgetting on the first task, results into barely adapting subsequent
tasks. HAT seems to be a better choice, but to understand the long term behavior of

6. Experiments 65

Figure 6.4: Absolute accuracies comparing EWC and EWC XdA. We see that EWC and
SI behave almost similar. The error bars are computed according to the standard error
of the mean based on four runs with a fixed seed.

HAT, the freezing of weights requires further analysis.

6.2.2 HAT Capacity Exhaustion
Classifying images from CIFAR-10 and CIFAR-100 is very similar and relatively easy. To
interpolate the long term test behavior of HAT, would require a different setup. Due to
the limited computational resources, we can simulate this behavior by freezing weights
from HAT. In Figure 6.5 we trained HAT not only freezing the weights of the first task
but additionally 90% of its total weight capacity. This simulates the exhaustion of free
parameters, similar to training multiple tasks in advance. HAT quickly drops almost
to the same performance level of plain SGD and would continue dropping if we had a
longer task sequence. We assume it performs slightly better on tasks that are similarly
distributed according to already learned features and worse for tasks that require to learn
orthogonal features. The embedding-based hard attention mask does not compensate
the lack of adaptiveness in the system. It is also important to state, that the network
has not reached full capacity after training on all 10 tasks. The last three layers conv3,
fc1, and fc2 only reached about 96% of its total capacity. However, the HAT method
could no longer adapt properly, meaning, that it could not continue learning with the
remaining capacity. The setting for EWC and SI with XdA is unchanged, because it
does not matter how many tasks were learned. They offer constant neural plasticity and
synaptic stabilization.

In Figure 6.6 we show the absolute accuracies after training 10 tasks sequentially. As
expected, we can observe that HAT performs well on CIFAR-10 similar tasks, which it
was able to learn unrestricted, but it cannot further adapt to the more elaborate tasks
from CIFAR-100.

6.2.3 HAT Weights Unfreezing
According to the authors of HAT, they can omit the issue of capacity exhaustion by
unfreezing the backward masks of old tasks. This behavior was tested in Figure 6.7. It
simulates long training sequences, where the capacity was exhausted and the model frees
parameters of old tasks to allow continuous adaption. In the 10 task setup, we simulate
this by unfreezing parameters before the predecessor to gain additional capacity while

6. Experiments 66

Figure 6.5: Forgetting ratio for HAT with 90% capacity frozen and XdA improved EWC
and SI with a 95% confidence interval that the values rely within the shaded areas. The
experiments are averaged over six random seeds.

Figure 6.6: Absolute accuracies after training 10 tasks sequentially with HAT having
90% of weights exhausted after the first task. The error bars are computed according to
the standard error of the mean based on four runs with a fixed seed.

restricting us only on the previous task. We observe that the performance quickly drops
since no other synaptic stabilization method prohibits destructive weight updates. This
will continue until it levels slightly above the plain SGD line, because it offers some
improvements over SGD by freezing the predecessor.

The plot clearly shows that HAT prevents catastrophic forgetting only through com-
pression and by freezing weights. Even if the model learns meaningful features, it over-
writes them when unfreezing old weights. It is also important to state, that we need to
determine a scheme to unfreeze the weights, which is more difficult as it might seem.
In the above section 6.2.2 we saw that before reaching the maximum capacity, the

6. Experiments 67

Figure 6.7: Forgetting ratio for HAT with unfrozen weights before the predecessor and
XdA improved EWC and SI with a 95% confidence interval that the values rely within
the shaded areas. The experiments are averaged over six random seeds. We can observe
that after 10 tasks HAT with unfrozen parameters performs similar to EWC or SI with
XdA.

network was no longer able to adapt. Although the first two convolutional layers c1
and c2 exhausted their full capacity, c3, fc1, and fc2 still offered free parameters. In
the current setup, we also know the total number of tasks and the maximum possible
accuracy per task. This allows us to estimate when our model starts to decrease its
performance compared to the unrestricted SGD version. Given that we do not know the
total number of tasks and their maximum performances, we need to define a learning
scheme that dynamically freezes and unfreezes parameters without any reference point.
In a reinforcement learning or continuous learning problem where we do not have the
complete state space and retraining the model multiple times from scratch to create a
performance estimate is unfeasible. We can no longer determine how well a HAT based
model would perform. Additionally to the lack of baseline, the lack of context switching
between the embeddings, makes HAT unpractical. For synaptic stabilization methods,
the setup still does not change. The plasticity of the neurons is always given with the
trade-off of forgetting some old or irrelevant features in favor of more promising ones.

For reference, we added the absolute accuracies after training 10 tasks sequentially,
including the presented unfreezing scheme of HAT in Figure 6.8. For the first task, the
accuracy of HAT dropped to the same level as SGD, although this is considered a novel
task consisting only of two classes from CIFAR-10. This demonstrates that HAT offers
no further stabilization except of freezing weights, which does not prevent overwriting
important features when unfreezing parameters after the maximum capacity has been

6. Experiments 68

Figure 6.8: Absolute accuracies after training 10 tasks sequentially with HAT having
all weights unfrozen before the direct predecessor task. The error bars are computed
according to the standard error of the mean based on four runs with a fixed seed.

reached.

6.3 Task Self-Prediction
An important aspect which we did not address until now, is that XdA with task-specific
parameters also requires task pre-determination for inference. This section will focus
on this issue, but only for Synaptic Intelligence, since the accuracies of SI and EWC
are similar and we want to reference an online learning method, capable for continuous
learning problems, such us in reinforcement learning environments. If a method requires
the context information of the image in advance to associate it with the corresponding
task, then the question arises why the prediction is still necessary? This is also what
makes HAT unpractical and we will not further include it in the following charts. This
requirement actually sorts out many approaches introduced in the related work chapter
3. SI with XdA and manual parameter selection is also not continuous learning capable
but we will add it to the plots as a baseline for the following experiments.

We want to let the model predict the task context without human interference. Be-
fore XdA, SI was able to make predictions by consolidating the weights for all tasks.
With the introduction of XdA and task-specific parameters, we restricted the applica-
tion of EWC-XdA and SI-XdA to require external interaction. In chapter 5, we proposed
a method which self-predicts its own parameter context, according to the summed ab-
solute distance during the forward pass or according to the cosine similarity. By using
the activation bias of each batch sample, we can self-predict the required parameters
of each task from XdA. We denote the self-predictive version of XdA as Automated
Context-Dependent Activation (AXdA). We showed that this gives even slightly better
performance after the 10 task sequence according to the forgetting ratio compared to the
non-optimized SI method. An additional configuration was added denoted as 1-XdA,
which represents XdA with a single parameter setting shared across all 10 tasks. In
Figure 6.9, we show all training results for six random seeds with three different XdA
variations. The most interesting observation is that 1-XdA also slightly outperforms
the manually selecting XdA version. We assume that this is either because of the small
number of tasks or due to required improvements for selecting the task context. If we
would increase the problem set, the additional parameters from XdA might outperform

6. Experiments 69

Figure 6.9: Forgetting ratio for Synaptic Intelligence with task self-prediction using
AXdA, with manual task selection XdA (for comparison) and with a single parameter
version for all tasks 1-XdA. We also added the 95% confidence intervals as in previous
plots, averaged over six random seeds.

the 1-XdA version. By improving the parameter selection method we could gain per-
formance on longer sequences. Additionally, by defining a regularization to reduce the
set of active units we could also reduce the number of destructive updates. In any case,
this would require a more in-depth analysis and exceeds the scope of this work. Either
way, all approaches improve the non-optimized SI approach. We also observe that the
AXdA version is slightly more unstable compared to the XdA version, but overall it be-
haves better than SI. By observing the confidence intervals, we see that SI has a much
wider spread than AXdA. This indicates a more stable learning behavior and could be
preferable to longer task sequences.

In Figure 6.11, we show the absolute accuracies after training 10 tasks sequentially
to illustrate how AXdA performs relative to SI with XdA, 1-XdA and simple SI.

6. Experiments 70

Figure 6.10: Absolute accuracies for all 10 tasks trained sequentially with self-predictive
task inference of AXdA compared to XdA and 1-XdA. The error bars are computed
according to the standard error of the mean based on four runs with a fixed seed. (Part
1/2)

6. Experiments 71

Figure 6.11: Absolute accuracies for all 10 tasks trained sequentially with self-predictive
task inference of AXdA compared to XdA and 1-XdA. The error bars are computed
according to the standard error of the mean based on four runs with a fixed seed. (Part
2/2)

6. Experiments 72

We can see that on average AXdA performs equally well compared to the other
approaches that get their context manually set or have no context to select. To rule out
random chance, we also trained a different model with an alternative distance metric,
including a sub-optimal distance metric based on the mean squared error (MSE). This
penalizes outliers more heavily and results in partially wrong task choices during training
and inference, which heavily impacts the performance. We compare the MSE version of
XdA with the cosine similarity and the summed absolute distances in Figure 6.12. We
can observe that XdA with MSE has two major bumps after training on the 4th and 10th
task. The forgetting ratio also considers intermediate performance drops, which explains
why the overall performance of AXdA is partially worse than XdA. The confidence
interval around the 4th task is much larger and emphasizes that during training the
performance varied heavily. This indicates that the comparison criteria to select the
correct task context is crucial and different metrics have an impact on the prediction
stability. For example, by using the cosine similarity as a third metric we observe that
the performance drops temporarily at task five, but outperforms the SAD-XdA after the
8th task. In Figure 6.14 we also added the absolute accuracies. Herby we demonstrated

Figure 6.12: Forgetting ratio for SI with task self-prediction using cosine similarity as
a metric SI-COS-AXdA with a 95% confidence interval that the values rely within the
shaded areas. The experiments are averaged over six random seeds.

that task self-prediction based on the activation space can offer competitive results and
context-dependent activations can be applied without any external interactions. This
offers a new tooling for developing dynamically extensible networks.

6. Experiments 73

Figure 6.13: Absolute accuracies after training 10 tasks sequentially with self-predictive
task inference of COS-AXdA. The error bars are computed according to the standard
error of the mean based on four runs with a fixed seed. (Part 1/2)

6. Experiments 74

Figure 6.14: Absolute accuracies after training 10 tasks sequentially with self-predictive
task inference of COS-AXdA. The error bars are computed according to the standard
error of the mean based on four runs with a fixed seed. (Part 2/2)

6. Experiments 75

6.4 Class Activation Maps
To visualize the activations of XdA, we added class activation maps after the first
convolutional layer, as shown in Figure 6.15. These images illustrate the perception of

Figure 6.15: Class activation maps of the first convolutional layer (c1). Each row shows
two image groups always starting with the original image, followed by the unchanged
activation maps and the context-based activations.

the individual neurons. The uniformly colored patches indicate the rectified activation
values from XdA. This illustrates the area of attention according to the class importance
of XdA. We can see, that the image in the first row and first column, showing a bull,
filters away the bull and classifies the image by focusing on its surrounding area. The last
image, in the third row, fourth column, showing a picture of a road, filters away the sky
and focuses on the actual image part. The class activation maps demonstrate that the
network learns meaningful filters, selecting important features—similar to attention—to
classify the image.

Chapter 7

Conclusion

“I learned very early the difference
between knowing the name of
something and knowing something.“

Richard P. Feynman

7.1 Summary
This thesis analyzed and presented promising results for an alternative non-linearity
function known as Context-Dependent Activations, which is capable of improving deep
neural networks using synaptic stabilization for continuous learning tasks. It uses train-
able threshold parameters to rectify the activation space and allows dynamic network
extensibility without disrupting past task predictions. We also presented a novel method
to avoid manual context selection and allowed the model to self-predict its own context
by tracking the exponential moving average of the activation space. In addition, this
non-linearity method outperformed ReLUs on single task predictions without requiring
any architectural changes, which allows it to be easily integrated into existing network
structures. Context self-prediction is a powerful tool which allows dynamic decisions
making and reduces disruptive updates to non-contributing or irrelevant units. To fur-
ther improve research in this field we propose several aspects to analysis in the next
section.

7.2 Future Work

7.2.1 Long Sequence Experiments
In chapter 6 we observed that the single parameter setup of 𝜙 slightly outperformed
the multi-parameter self-task prediction setup. This is an interesting result and opens
up new questions regarding long sequence learning behavior and if the multi-parameter
setup keeps improving over time. Based on the work from Masse, Grant, and Freedman,
2018, context-dependence improves long term synaptic stabilization methods and we

76

7. Conclusion 77

assume the same results for our work, but we leave the exploration of these setups open
for future work.

7.2.2 Improving the Similarity Metric
In chapter 5 we proposed two metrics to compute the similarity metric between the
tracked activation means and the provided sample activations. The absolute error and
cosine similarity offered competitive results compared to the manual selected task pre-
dictions. We also observed that the total number of forwarded activations is constantly
reduced to 50% with the absolute error metric. Further reduction may avoid further
forgetting and may increase the task-specific accuracy.

7.2.3 Reduce Activation Overlap
The active units mark the parameter set which is altered by the backpropagation of the
error term and the more updates overlap with previously important weights the more
these alternations will contribute to forgetting of old tasks. By reducing the number of
active units and the overlapping units per task, we can promote better adaptiveness to
tasks without altering previously important tasks.

7.2.4 Hierarchical Context Selection
Self-task prediction requires 𝒪(𝑘 * 𝑡) number of computations during the forward pass,
where 𝑘 denotes the layer index and 𝑡 the number of tasks. This increases training
linearly, since the number of layers is fixed, but for very long task sequences it become
unfeasible. Therefore, we suggest to use hashing methods as proposed by Weinberger
et al., 2009, and switch between the threshold parameters. This, of course, has to be
further tested and marks an interesting continuation of this work.

7.2.5 Reinforcement Learning Application
The implementation of Synaptic Intelligence with Context-Dependent Activations im-
proved the performance of the 10 task setup using CIFAR-10 and CIFAR-100. It also
allows an online learning setup to train in a reinforcement learning environment, but
requires further analysis to determine the optimal number of task thresholds, regular-
ization term and self-context prediction metric.

7.2.6 Dynamic Memory Allocation
In reinforcement learning, the number of tasks is often not inferable and would hinder
the ability of Context-Dependent Activations to allocate additional parameters. To avoid
manual task pre-determination we suggest to compute deviation between the tracked
activation means and the sample activations and reallocate new memory if a certain
percentage is exceeded. This would mark a novel method to increase the parameter size
and in combination with self-task prediction would not require any external interference
during the forward passes.

References

Literature

[1] Carlos Améndola, Alexander Engström, and Christian Haase. “Maximum Number
of Modes of Gaussian Mixtures”. abs/1702.05066 (2017). arXiv: 1702.05066. url:
http://arxiv.org/abs/1702.05066 (cit. on p. 35).

[2] Lei Jimmy Ba, Ryan Kiros Kiros, and Geoffrey E. Hinton. “Layer Normalization”.
arXiv e-prints (July 2016). arXiv: 1607.06450 [stat.ML] (cit. on pp. 22, 59).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. 2015. url: http://arxiv.org/abs/1409.0473
(cit. on p. 23).

[4] Marcus K. Benna and Stefano Fusi. “Computational principles of synaptic memory
consolidation”. Nature neuroscience (2016) (cit. on p. 29).

[5] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. 1st ed. Morgan & Clay-
pool Publishers, 2016 (cit. on p. 7).

[6] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural Net-
works on Sequence Modeling”. CoRR abs/1412.3555 (2014). arXiv: 1412.3555.
url: http://arxiv.org/abs/1412.3555 (cit. on p. 2).

[7] Rosangela Saher Cintra and Haroldo F. de Campos Velho. “Data Assimilation
by Artificial Neural Networks for an Atmospheric General Circulation Model:
Conventional Observation”. CoRR abs/1407.4360 (2011) (cit. on p. 14).

[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs)”. Under Review
of ICLR2016 (1997) (Nov. 2015) (cit. on p. 18).

[9] Chrisantha Fernando, Dylan Banarse, et al. “PathNet: Evolution Channels Gra-
dient Descent in Super Neural Networks”. CoRR abs/1701.08734 (2017). arXiv:
1701.08734. url: http://arxiv.org/abs/1701.08734 (cit. on p. 37).

[10] Chrisantha Fernando, Eörs Szathmáry, and Phil Husbands. “Selectionist and Evo-
lutionary Approaches to Brain Function: A Critical Appraisal”. In: Front. Comput.
Neurosci. 2012 (cit. on p. 37).

78

http://arxiv.org/abs/1702.05066
http://arxiv.org/abs/1702.05066
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734

References 79

[11] Robert M. French. “Using semi-distributed representations to overcome catas-
trophic forgetting in connectionist networks”. In Proc. of the Annual Conf. of the
Cognitive Science Society (CogSci) (1991), pp. 173–178 (cit. on p. 8).

[12] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position”. Biological
Cybernetics (1980), pp. 267–285 (cit. on p. 20).

[13] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: JMLR W&CP: Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS 2010).
Vol. 9. Chia Laguna Resort, Sardinia, Italy, May 2010, pp. 249–256 (cit. on p. 62).

[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neu-
ral Networks”. In: Proceedings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and
Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort Laud-
erdale, FL, USA: PMLR, Nov. 2011, pp. 315–323. url: http://proceedings.mlr.pr
ess/v15/glorot11a.html (cit. on p. 18).

[15] Ian J. Goodfellow, Mehdi Mirza, et al. “An empirical investigation of catastrophic
forgetting in gradient-based neural networks”. CoRR abs/1312.6211 (2014). arXiv:
1312.6211. url: http://arxiv.org/abs/1312.6211 (cit. on p. 24).

[17] Ian J. Goodfellow, Jean Pouget-Abadie, et al. “Generative Adversarial Nets”. In:
Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani
et al. Curran Associates, Inc., 2014, pp. 2672–2680. url: http://papers.nips.cc/pa
per/5423-generative-adversarial-nets.pdf (cit. on p. 55).

[16] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. “Qualitatively character-
izing neural network optimization problems”. CoRR abs/1412.6544 (2014). arXiv:
1412.6544. url: http://arxiv.org/abs/1412.6544 (cit. on p. 36).

[18] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. CoRR
abs/1410.5401 (2014). arXiv: 1410.5401. url: http://arxiv .org/abs/1410.5401
(cit. on p. 1).

[19] Kaiming He et al. “Deep Residual Learning for Image Recognition”. CoRR
abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv .org/abs/1512.03
385 (cit. on pp. 21, 24).

[20] Robert Hecht-Nielsen. “Theory of the Backpropagation Neural Network”. In Pro-
ceedings of the International Joint Conference on Neural Networks, volume I,
pages 593–605. Piscataway, NJ: IEEE (1989) (cit. on p. 29).

[21] Geoffrey E. Hinton, Nitish Srivastava, et al. “Improving neural networks by pre-
venting co-adaptation of feature detectors”. CoRR abs/1207.0580 (2012). arXiv:
1207.0580. url: http://arxiv.org/abs/1207.0580 (cit. on p. 22).

[22] Geoffrey E. Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a
Neural Network”. NIPS Workshop (2014) (cit. on p. 32).

[23] Sepp Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. Technical
University Munich, Institute of Computer Science (1991) (cit. on p. 17).

http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580

References 80

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. Neural
Computation, 9(8):1735–1780 (1997) (cit. on p. 2).

[25] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Connected Convo-
lutional Networks”. CoRR abs/1608.06993 (2016). arXiv: 1608.06993. url: http
://arxiv.org/abs/1608.06993 (cit. on p. 24).

[26] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. CoRR abs/1502.03167
(2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.03167 (cit. on p. 21).

[27] Heechul Jung et al. “Less-forgetting Learning in Deep Neural Networks”. CoRR
abs/1607.00122 (2016). arXiv: 1607.00122. url: http://arxiv.org/abs/1607.00122
(cit. on pp. 30, 31).

[28] Lukasz Kaiser et al. “Learning to Remember Rare Events”. CoRR abs/1703.03129
(2017). arXiv: 1703.03129. url: http://arxiv.org/abs/1703.03129 (cit. on p. 2).

[29] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”.
Proc. of the National Academy of Sciences of the USA, 114(13):3521–3526 (2017)
(cit. on pp. 3, 29, 52).

[30] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: Advances in
Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Asso-
ciates, Inc., 2017, pp. 971–980. url: http://papers.nips.cc/paper/6698-self-normal
izing-neural-networks.pdf (cit. on pp. 18, 19).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012,
pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-classification-with
-deep-convolutional-neural-networks.pdf (cit. on p. 23).

[32] Yann LeCun, Bernhard E. Boser, et al. “Backpropagation Applied to Handwritten
Zip Code Recognition”. Neural Computation (1989), pp. 541–551 (cit. on p. 20).

[33] Yann LeCun, Léon Bottou, et al. “Gradient-based learning applied to document
recognition” (1998), pp. 2278–2324 (cit. on p. 23).

[34] Sang-Woo Lee et al. “Overcoming Catastrophic Forgetting by Incremental Mo-
ment Matching”. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems (NIPS), volume 30, pp. 4655–4665. Curran Associates Inc.
(2017) (cit. on pp. 33, 34).

[35] H. Legg and M. Hutter. “Universal Intelligence: A Definition of Machine Intelli-
gence”. CoRR abs/0712.3329 (2007). arXiv: 0712.3329. url: http://arxiv.org/abs
/0712.3329 (cit. on p. vii).

[36] Zhizhong Li and Derek Hoiem. “Learning Without Forgetting”. IEEE Trans. on
Pattern Analysis and Machine Intelligence pp (99):1–1 (2017) (cit. on p. 32).

[37] Seppo Linnainmaa. “The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors.” Cambrindge, Mas-
sachusetts: University of Helsinki, 1970 (cit. on p. 14).

http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1607.00122
http://arxiv.org/abs/1607.00122
http://arxiv.org/abs/1703.03129
http://arxiv.org/abs/1703.03129
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/0712.3329
http://arxiv.org/abs/0712.3329
http://arxiv.org/abs/0712.3329

References 81

[38] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient Episodic Memory for Con-
tinuum Learning”. CoRR abs/1706.08840 (2017). arXiv: 1706.08840. url: http://a
rxiv.org/abs/1706.08840 (cit. on pp. 46, 62).

[39] Wenjie Luo et al. “Understanding the Effective Receptive Field in Deep Convolu-
tional Neural Networks”. CoRR abs/1701.04128 (2017). arXiv: 1701.04128. url:
http://arxiv.org/abs/1701.04128 (cit. on p. 21).

[40] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches
to Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, Sept. 2015, pp. 1412–1421. url: https
://www.aclweb.org/anthology/D15-1166 (cit. on p. 23).

[41] David J.C. MacKay. “Choice of Basis for Laplace Approximation”. Machine
Learning 33.1 (Oct. 1998), pp. 77–86. url: https ://doi .org/10.1023/A:10075
58615313 (cit. on p. 30).

[42] Arun Mallya and Svetlana Lazebnik. “PackNet: Adding Multiple Tasks to a Single
Network by Iterative Pruning”. CoRR abs/1711.05769 (2017). arXiv: 1711.05769
. url: http://arxiv.org/abs/1711.05769 (cit. on pp. 38, 39).

[43] Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman. “Alleviating Catas-
trophic Forgetting Using Context-Dependent Gating and Synaptic Stabilization”.
CoRR abs/1802.01569 (2018). arXiv: 1802.01569. url: http://arxiv.org/abs/1802
.01569 (cit. on pp. 4, 44, 45, 51–53, 76).

[44] Michael McCloskey and Neal J. Cohen. “Catastrophic interference in connectionist
networks: The sequential learning problem”. In G. H. Bower (ed.) 24 (1989),
pp. 109–164 (cit. on p. 5).

[45] Pamela McCorduck. Machines Who Think. New York, NY, USA: W. H. Freeman
& Co., 1979 (cit. on p. 1).

[46] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. “Regularizing and
Optimizing LSTM Language Models”. CoRR abs/1708.02182 (2017). arXiv: 170
8.02182. url: http://arxiv.org/abs/1708.02182 (cit. on p. 2).

[47] Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller, eds. Neural Net-
works: Tricks of the Trade - Second Edition. Vol. 7700. Lecture Notes in Computer
Science. Springer, 2012. url: https://doi.org/10.1007/978-3-642-35289-8 (cit. on
p. 22).

[48] Surajit Ray and Bruce G. Lindsay. “The topography of multivariate normal mix-
tures”. Annals of Statistics, pages 2042–2065 (2005) (cit. on p. 35).

[49] Anthony Robins. “Catastrophic Forgetting, Rehearsal, and Pseudorehearsal”.
Connection Science 7.2 (1995) (cit. on p. 5).

[50] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. 1961 (cit. on p. 14).

[51] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.
CoRR abs/1609.04747 (2016). arXiv: 1609 . 04747. url: http : / / arxiv . org / abs
/1609.04747 (cit. on p. 15).

http://arxiv.org/abs/1706.08840
http://arxiv.org/abs/1706.08840
http://arxiv.org/abs/1706.08840
http://arxiv.org/abs/1701.04128
http://arxiv.org/abs/1701.04128
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://doi.org/10.1023/A:1007558615313
https://doi.org/10.1023/A:1007558615313
http://arxiv.org/abs/1711.05769
http://arxiv.org/abs/1711.05769
http://arxiv.org/abs/1711.05769
http://arxiv.org/abs/1802.01569
http://arxiv.org/abs/1802.01569
http://arxiv.org/abs/1802.01569
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
https://doi.org/10.1007/978-3-642-35289-8
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

References 82

[52] Sebastian Ruder. “An Overview of Multi-Task Learning in Deep Neural Net-
works”. CoRR abs/1706.05098 (2017). arXiv: 1706.05098. url: http://arxiv.or
g/abs/1706.05098 (cit. on p. 6).

[53] Andrei A. Rusu et al. “Progressive Neural Networks”. CoRR abs/1606.04671
(2016). arXiv: 1606.04671. url: http://arxiv.org/abs/1606.04671 (cit. on pp. 27,
28).

[54] Joan Serrà et al. “Overcoming catastrophic forgetting with hard attention to the
task”. CoRR abs/1801.01423 (2018). arXiv: 1801.01423. url: http://arxiv.org/ab
s/1801.01423 (cit. on pp. 3, 7, 23, 39, 41, 46–48, 50, 52, 53).

[55] D. Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. Nature 529(7587):484 (2016) (cit. on p. vii).

[56] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. abs/1409.1556 (2014). arXiv: 1409.1556. url: h
ttp://arxiv.org/abs/1409.1556 (cit. on p. 24).

[57] Nitish Srivastava et al. “Dropout: a simple way to prevent Neural Networks from
Overfitting”. Journal of Machine Learning Research 15(1):1929–1958 (2014) (cit.
on p. 36).

[58] Richard S. Sutton and Andrew G. Barto. “Reinforcement Learning: An Introduc-
tion”. MIT Press, Cambridge, MA (2017) (cit. on pp. vii, 10, 13).

[59] Christian Szegedy et al. “Going Deeper with Convolutions”. CoRR abs/1409.4842
(2014). arXiv: 1409.4842. url: http://arxiv.org/abs/1409.4842 (cit. on p. 23).

[60] Kilian Q. Weinberger et al. “Feature Hashing for Large Scale Multitask Learning”.
CoRR abs/0902.2206 (2009). arXiv: 0902.2206. url: http://arxiv.org/abs/0902.2
206 (cit. on p. 77).

[61] Paul John Werbos. “Beyond Regression”. New tools for prediction and analysis
in the behavioral science. Cambrindge, Massachusetts: Harward University, Jan.
1975 (cit. on p. 1).

[62] Thomas Wiatowski and Helmut Bölcskei. “A Mathematical Theory of Deep
Convolutional Neural Networks for Feature Extraction”. CoRR abs/1512.06293
(2015). arXiv: 1512.06293. url: http://arxiv.org/abs/1512.06293 (cit. on p. 6).

[63] Bing Xu et al. “Empirical Evaluation of Rectified Activations in Convolutional
Network”. CoRR abs/1505.00853 (2015). arXiv: 1505.00853. url: http://arxiv.or
g/abs/1505.00853 (cit. on p. 18).

[64] Baosong Yang et al. “Convolutional Self-Attention Networks”. CoRR
abs/1904.03107 (2019). arXiv: 1904 . 03107. url: http : / / arxiv . org / abs / 1904
.03107 (cit. on p. 23).

[65] Greg Yang and Samuel S. Schoenholz. “Mean Field Residual Networks: On the
Edge of Chaos”. CoRR abs/1712.08969 (2017). arXiv: 1712.08969. url: http://a
rxiv.org/abs/1712.08969 (cit. on p. 18).

[66] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated Con-
volutions”. CoRR abs/1511.07122 (2015). arXiv: 1511.07122. url: http://arxiv.or
g/abs/1511.07122 (cit. on p. 21).

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1801.01423
http://arxiv.org/abs/1801.01423
http://arxiv.org/abs/1801.01423
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/1512.06293
http://arxiv.org/abs/1512.06293
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1904.03107
http://arxiv.org/abs/1904.03107
http://arxiv.org/abs/1904.03107
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122

References 83

[67] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual Learning Through
Synaptic Intelligence”. Conference on Machine Learning pp. 3987–3995 (2017)
(cit. on pp. 3, 8, 42, 52).

Online sources

[68] Soham Chatterjee. Different Kinds of Convolutional Filters. 2017. url: https://s
tage.saama.com/blog/different-kinds-convolutional-filters/ (cit. on p. 21).

[69] Stefan Kojouharov. Cheat Sheets for AI, Neural Networks, Machine Learning,
Deep Learning & Big Data. 2017. url: https://becominghuman.ai/cheat- sheets
- for- ai- neural- networks-machine- learning-deep- learning-big- data- 678c51b4b463
(cit. on p. 10).

[70] C. Moyer. How Google’s AlphaGo Beat a Go World Champion. 2016. url: https
://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/47561
1/ (cit. on p. vii).

[71] Michael Aaron Nielsen. Neural Networks and Deep Learning. 2016. url: http://n
euralnetworksanddeeplearning.com/ (cit. on p. 15).

[72] PyTorch Tutorials. Word Embeddings - Encoding Lexical Semantics. 2017. url: h
ttps://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html (cit. on
p. 23).

[73] CS231n Stanford Blog. CS231n Convolutional Neural Networks for Visual Recog-
nition. 2019. url: http://cs231n.github.io/convolutional-networks/ (cit. on p. 20).

[74] University of Toronto Website. The CIFAR-10 dataset. 2009. url: https://www.c
s.toronto.edu/∼kriz/cifar.html (cit. on pp. 25, 26).

[75] Wikipedia. Convolutional Neural Network. 2019. url: https://en.wikipedia.org/wi
ki/Convolutional_neural_network (cit. on p. 20).

[76] Wikipedia. Supervised learning. 2019. url: https://en.wikipedia.org/wiki/Supervis
ed_learning (cit. on p. 9).

https://stage.saama.com/blog/different-kinds-convolutional-filters/
https://stage.saama.com/blog/different-kinds-convolutional-filters/
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
http://cs231n.github.io/convolutional-networks/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Background
	Motivation
	Scope
	Target
	Structure

	Theoretical Foundations
	Learning Definitions
	Single Task Learning
	Multi-Task Learning
	Transfer Learning
	Fine-Tuning
	Continuous Learning
	Rehearsal
	Pseudo-Rehearsal
	Reduced Representational Overlap
	Overcoming Catastrophic Forgetting

	Learning Approaches
	Supervised Learning
	Reinforcement Learning

	Deep Learning Concepts
	Fully Connected Layers
	Activation Functions
	Convolutional Layers
	Batch Normalization
	Layer Normalization
	Dropout
	Embedding
	Attention

	Architectures
	AlexNet

	Datasets
	CIFAR-10
	CIFAR-100

	Related Work
	Progressive Neural Networks
	Elastic Weight Consolidation
	Less-Forgetting Learning
	Learning Without Forgetting
	Incremental Moment Matching
	Matching Posterior Distributions
	Mean-based IMM
	Mode-based IMM
	Transfer Techniques

	PathNet
	Modules

	PackNet
	Pruning Procedure
	Inference

	Hard Attention to the Task
	Embedding Gradient Compensation
	Promoting Low Capacity

	Synaptic Intelligence
	Context-Dependent Gating

	Comparison
	Forgetting Ratio
	Analysis

	Context-Dependent Activations
	Concept
	Context-Dependent Activations
	Activation Threshold
	Regularization
	Memory Footprint

	Self-Task Prediction
	Absolute Difference
	Cosine Similarity
	Runtime Complexity

	Activation Normalization

	Experiments
	Setup
	Baseline
	Method Comparison
	HAT Capacity Exhaustion
	HAT Weights Unfreezing

	Task Self-Prediction
	Class Activation Maps

	Conclusion
	Summary
	Future Work
	Long Sequence Experiments
	Improving the Similarity Metric
	Reduce Activation Overlap
	Hierarchical Context Selection
	Reinforcement Learning Application
	Dynamic Memory Allocation

	References
	Literature
	Online sources

