
Endbericht zum Berufspraktikum

MARIUS-CONSTANTIN DINU

B A C H E L O R A R B E I T

Nr. 1310307054-B

eingereicht am
Fachhochschul-Bachelorstudiengang

Software Engineering

in Hagenberg

im September 2016

Praktikumsstelle:

Siemens Corporation Corporate Technology
SCCT

755 College Rd E, Princeton, NJ 08540

609-734-6500
www.siemens.com

Kontaktperson:

Dr. Erhan Batuhan Arisoy
Siemens Research Scientist

FH-Prof. DI Dr. Werner Christian Kurschl
University of Applied Sciences Upper Austria Professor

ii

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own
original work. Where other sources of information have been used, they have
been indicated as such and properly acknowledged. I further declare that this
or similar work has not been submitted for credit elsewhere.

Hagenberg, September 1, 2016

Marius-Constantin Dinu

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Siemens Corporation Corporate Technology 1
1.2 Background . 1
1.3 Motivation . 2
1.4 Goal . 2
1.5 Target . 2
1.6 Structure . 3

2 Xamarin 4
2.1 Portable Class Library vs Shared Projects 5
2.2 Xamarin.Forms . 7
2.3 Xamarin.Android . 8
2.4 Xamarin.iOS . 9
2.5 Xamarin.UWP . 9

3 Classification 10
3.1 Image Pre-Processing . 12
3.2 Support Vector Machine . 13
3.3 Neural Network . 16

4 MathQ 22
4.1 Problem . 22
4.2 Architecture . 22
4.3 Design . 23

4.3.1 Common . 23
4.3.2 Frontend . 24
4.3.3 Interoperability . 25
4.3.4 Backend . 28

iv

Contents v

5 Conclusion 29
5.1 Evaluation . 29
5.2 Future Work . 29
5.3 Experiences . 30

References 32
Acronym . 33
Glossary . 34

Abstract

This thesis covers the implementation of a mobile application using the Xamarin
framework and modern machine learning techniques to recognize handwrit-
ten mathematical characters. It focuses on the Android version of the Xamarin
framework and refers to the Android NDK to enable native C++ code support
for the backend implementation. It also includes the required interoperability
between C# and C++ using InteropServices. Furthermore the classification of
characters is formally described, which is based on support vector machines
and artificial neural networks.

vi

Kurzfassung

Diese Bachelorarbeit beinhaltet die Implementierung einer mobilen Applikation
unter Zuhilfenahme des Xamarin Frameworks zur Erkennung von mathematis-
chen Zeichen. Hierbei wird der Fokus auf die Android Variante des Xamarin
Frameworks gesetzt, um mittels des Android NDK das Backend in nativem C++
Code programmieren zu können. Im Zuge dessen, werden auch die InteropSer-
vices für die C# und C++ Interoperabilität beschrieben. Ein weiterer Aspekt
dieser Arbeit ist die Klassifizierung von Zeichen, welche mittels moderner Ma-
chine Learning Methoden umgesetzt wird. Konkret handelt es sich hierbei um
die formale Definition von neuronalen Netzen und Support Vector Machines.

vii

Chapter 1

Introduction

1.1 Siemens Corporation Corporate Technology

Siemens was founded 1847 by Werner von Siemens. Its principal divisions are
Industry, Energy, Healthineers and Infrastructure & Cities. Corporate Technol-
ogy is Siemens’ central research and development unit. It develops Siemens’
technology and innovation strategy, creates and industrializes basic technolo-
gies, promotes business excellence through consulting and engineering services,
and protects the company’s intellectual property.
The Research & Development Center located in Princeton, New Jersey, USA
was founded in 1977 and comprises around 200 of the worlds most talented
researchers for digital technologies and industrial automation. This covers top-
ics such as additive manufacturing (3D printing), machine learning algorithmic
perspectives and PLM software solutions for computer-aided design and engi-
neering.
It is also interesting to know, that not all developed solutions are targeting a
direct end-user. They may also be integrated as subparts to existing solutions or
be the foundational research base of innovative Siemens products.

1.2 Background

Mobile applications have become one of the most important business models
for modern companies. Not only do they provide on-hand information to their
customers at any given time, they also emphasize their brand recognition value,
retrieve user data and may become an additional source of income [Sta15].
But developing an app might not be an easy task for every SME. To cover the va-
riety of operating systems, handle multiple development platforms and operate
with different programming languages may become a very challenging project.
Alternatively it would be possible to use a web based app approach, embedding
browser controls into an app for each native platform to save time and money
on development. But in reality, this results in compromising with the user expe-

1

1. Introduction 2

rience and may not only end up with a negative evaluation of an app, but also
with a bad reputation in terms of software quality.
This emerged framework developers to create solutions offering cross-platform
toolsets. Xamarin, alongside with Appcelerator Titanium, Embarcardero Fire-
Monkey and Apache Cordova offer state of the art cross-platform development
frameworks, which focus on building applications for the most common plat-
forms, such as Windows, Android and iOS [Opt15].
These new toolsets are speeding up productivity for application prototyping,
shortening the release cycles of an app solution.

1.3 Motivation

Of great interest with regard to these opportunities Siemens has assigned me to
develop a mobile application, enabling users to draw numerical characters via
touch input and recognition of the digitally hand-written characters. To achieve
this task, several operations are required:

• Building a user interface for the input strokes using a cross-platform toolset
• Performing analysis of the stroke paths to determine the character bound-

aries
• Classifying the characters using machine learning approaches

1.4 Goal

The goal of this thesis is to develop a mobile application prototype, which recog-
nizes touch input and classifies the strokes to defined characters. The prototype
app MathQ must normalize the drawn images by resizing and splitting them
into separate data strokes. This is followed by feeding the normalized data into
a Support Vector Machine (SVM) or Artificial Neural Network (ANN) for classi-
fication. The resulting output is determining which type of character an individ-
ual stroke represented. Furthermore, according to Siemens the backend has to
be implemented in C++, which is requiring the Android NDK for interoperability
between C# and C++.

1.5 Target

This thesis targets software developers with a profound expertise in C#, C++ and
are aware of the common software patterns and paradigms. Basic knowledge of
a native App development on Android or iOS is also recommended. In addition
it may also require some basic knowledge of applied mathematics.

1. Introduction 3

1.6 Structure

Chapter Xamarin will describe the structure of the Xamarin framework and give
an overview of cross-platform development using different approaches.
Chapter Classification offers an introduction to image pre-processing and classi-
fication. It also provides an overview of the principles applied in Support Vector
Machines and Neural Networks.
Chapter MathQ defines the App architecture and illustrates the major imple-
mentation points of the software.
Chapter Conclusion reviews the development results and gives an overview
about possible future work.

Chapter 2

Xamarin

Xamarin was founded in May 2011 by the engineers who created the Mono
projects based on the Common Language Infrastructure (CLI). On the 24th of
February 2016, Microsoft signed an agreement to acquire Xamarin, improving
their mobile development tools and services. Since then, integrations for Visual
Studio, Microsoft Azure or Office 365 provide developers with an end-to-end
workflow for native cross-platform app development [Gut16].
The Xamarin extension is available for manual download for Visual Studio 2012,
2013 and integrated in the setup since 2015. In addition to the Visual Studio
IDE, the Xamarin Studio IDE provides opportunities to develop cross-platform
apps on Mac and also on Windows. Although the Xamarin Studio version for
Mac only offers development support for Android and iOS. Its Windows repre-
sentation only offers profound Android app development support. The recom-
mended IDE is still Visual Studio enabling development not only for iOS and
Android Apps, but also for Universal Windows Platform (UWP) Apps and Win-
dows Phone 8, 8.1 Apps or Microsoft Silverlight applications.
The Xamarin SDK offers portable libraries supporting UI flow control, notifica-
tion based services, device specific sensors, etc. across various platforms, which
is continuously extended. The framework generally distinguishes between two
types of development approaches. The Xamarin.Forms development approach
and the classic Xamarin native platform approach. Xamarin.Forms uses Portable
Class Libraries (PCL) to enable code compatibility on multiple platforms. This
enables possibilities to write code once and deploy to various devices. This in-
cludes the UI development by giving support to Microsoft’s MVVM pattern using
XAML for declarative UI designing.
In addition to its advantages, there are also limitations when using portable
code. The developed code base has to be supported on all targeted platforms,
excluding special features such as File.IO support, Runtime API, HTTPClient,
etc. It also includes limitations to the use of the ViewModel and XAML approach.
The included Xamarin.Forms classes differ mainly from classic XAML code, of-
fering only a subset of abilities or even restricting the binding abilities.

4

2. Xamarin 5

Figure 2.1: Xamarin.Forms App example (left to right: Android, iOS, Windows
Phone) [edx16]

To enable platform-specific features, which are not available in Xamarin.Forms,
Xamarin offers either the use of runtime callable wrappers or the translation of
native language code to a .NET compliant language.
Whether to use the classic Xamarin approach or write code using Xamarin.Forms
PCL depends on factors such as:

• testability
• responsiveness
• achievable user experience
• extensiveness of device specific requirements
• time related investments

Xamarin.Form is best used for fast prototyping and offers good testability due to
portable code but does not give support for device specific sensors or navigation
idiosyncrasies, which may contribute to the overall user experience [Xam16].
Figure 2.1 shows an example of the Xamarin.Forms user experience transition
for each native platform after deployment.

2.1 Portable Class Library vs Shared Projects

Due to past license restrictions PCL were only available for the Microsoft plat-
form, but since 2013 this has changed and now the standalone releases of PCL
can be shared and developed across a wide variety of platforms to build even
more profound .NET applications. Developing and testing code this way, may
not only save time but also money. Xamarin extends the usage of PCL by includ-
ing new supported target platforms such as Android and iOS. This means when
developing applications, the target API settings influence directly the available

2. Xamarin 6

Figure 2.2: Target settings in Visual Studio

features for the PCL code and have to be the same for all used PCL projects.
Figure 2.2 illustrates the Visual Studio target settings of a PCL.
As an alternative for PCL it is possible to use Shared Projects. Shared Projects
enable the use of platform specific code by implementing a compiler directive
around that code. The following code fragment shows the usage of such com-
piler directives:

public string GetPlatform() {
var platform = "unknown";
#if WINDOWS_PHONE
platform = "windowsphone";
#else
#if __ANDROID__
platform = "android";
#else

...

#if __IOS__
platform = "iOS";
#endif
return platform;

}

This might be a good choice for prototyping or developing small projects using
partial classes, although when dealing with multiple developers and more pro-
found architectural structures, developing with Shared Projects ends up with
struggling to find the individual settings for each platform. This concludes to a
boilerplate code, creating a hardly maintainable application.

2. Xamarin 7

2.2 Xamarin.Forms

At first sight, developing with Xamarin.Forms may seem very familiar for WPF
experienced developers. This initial template structure is similar organized as
in WPF, when creating a new project. The App.cs file represents the main entry
point of the Xamarin.Forms application, inheriting from a base class Application,
but the using declarative are referencing different namespaces.
The life cycle methods offered by WPF are based on the System.Windows names-
pace, while the Xamarin.Forms framework uses the Xamarin.Forms namespace.
Also in comparison to the generated WPF App output class, the Xamarin output
does not contain a main entry method. Because of its PCL characteristics it is
meant to be instantiated by a platform specific implementation via the provided
LoadApplication method.
In addition both are using different CodeDom GeneratedCodeAttribute task pa-
rameter for processing the XAML markup.
Xamarin.Forms generated class (App.g.i.cs):

namespace matheqrec.App {
using System;
using Xamarin.Forms;
using Xamarin.Forms.Xaml;

public partial class App : Application {
[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build
.Tasks.XamlG", "0.0.0.0")]
private void InitializeComponent() {

this.LoadFromXaml(typeof(App));
}

}
}

WPF generated class (App.xaml.g.cs):

public partial class App : System.Windows.Application {
[System.Diagnostics.DebuggerNonUserCodeAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute("

PresentationBuildTasks", "4.0.0.0")]
public void InitializeComponent() {

#line 5 "..\..\App.xaml"
this.StartupUri = new System.Uri("MainWindow.xaml", System.UriKind.
Relative);
#line default
#line hidden

}

[System.STAThreadAttribute()]
[System.Diagnostics.DebuggerNonUserCodeAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute("

PresentationBuildTasks", "4.0.0.0")]
public static void Main() {

MyApp.App app = new MyApp.App();
app.InitializeComponent();

2. Xamarin 8

app.Run();
}

}

Both WPF and Xamarin.Forms can use a code or XAML based approach for de-
veloping UI elements, but unlike WPF at the current state the IDE support for
Xamarin.Forms may seems sometimes unstable and buggy. Also many online
tutorials offer only a code based approach, which also is related to some XAML
Binding disabilities of many Xamarin.Forms classes.

2.3 Xamarin.Android

The native Android support of Xamarin operates with the Android SDK and
uses mainly runtime callable wrappers. An experienced Android developer has
to familiarize himself with the new IDE environment and the C# programming
language and is then able to anticipate mostly the available API.
Derived from the preset project template structure the main application entry
point is the MainActivity class. This class is based on the Activity class known
from the Android SDK, providing important features such as the life cycle meth-
ods OnCreate, OnStop or OnPause and the FindViewById method to select UI
elements.
Xamarin.Android also offers support for working with Android Resource struc-
tures. Within the Resources directory of the project sub-directories for drawable,
layout and value objects are made available. This enables the usage of the An-
droid designed library for parsing AXML UI files. To programmatically access
the declared resources, ID entries are declared within the partial resource class
(Resources.designer.cs) and categorized within partial inner classes of type At-
tribute, Drawable, Id, Layout and String.
The following code sample illustrates the partial resource class with a declared
id:

[System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Android.Build.
Tasks", "1.0.0.0")]

public partial class Resource {
public partial class Id {

public const int myButton = 2131034112;
static Id() {

global::Android.Runtime.ResourceIdManager.UpdateIdValues();
}

}
...

}

The following sample illustrates the usage of the Id resource via AXML.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"

2. Xamarin 9

android:layout_height="fill_parent">
<Button

android:id="@+id/myButton"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

</LinearLayout>

2.4 Xamarin.iOS

Xamarin allows to also build native iOS Apps by binding all the available Apple
API framework. There are two possibilities for development. Either directly use
a Mac and download the Xamarin Studio or developing on a Windows machine
using network access via ssh providing the build and deployment service.
Since Xcode 7 free provisioning terms apply in terms of App development, can-
celing out the necessity of having an Apple Developer membership. Although
this eases the development for iOS platforms, there are still some preconditions
required:

• Mac running OS X Yosemite (10.10) or higher
• including iOS SDK (latest version recommended)
• including Xcode (latest version recommended)
• including Xamarin iOS SDK and
• for Windows developers: Windows 7 or higher
• for Mac developers: Xamarin Studio

2.5 Xamarin.UWP

Developing for the UWP is only possible with Visual Studio 2015, using Win-
dows 10 and with Xamarin.Forms 2.1 or later. This includes the usage of the
entire .NET framework including also the Wind32 API. The UWP offers a guar-
anteed API layer available for all the deployable devices using the Windows 10
architecture and also offering individual features available only on the targeted
device family. This enables to build Apps for Desktop, Mobile, Xbox and IoT
devices.

Chapter 3

Classification

In computer vision image classification is a very crucial task. Recognizing writ-
ten digits, letters, characters or drawn pictures has found a wide range of appli-
cations from security enhancement, geographic remote sensing techniques to
autonomous car control and biological pattern analytics [Liu08].
For humans it seems to be a very easy task to extract information from an image
or object, but for machines it has proven to be a fairly complex problem. De-
veloping classification methods can be a very exhausting job and the resulting
outcome may request a lot of computational power to work efficiently.
The intent of the classification is to assign each image to a defined category,
which then can be used for matching the expected output element. A simple
example would be to use a grayscale image 28x28 pixels large and to exam-
ine each pixel value (0x00 to 0xFF => 256 values) to create classes based on
the overall pattern. Because these patterns are very complex to describe, due to
their wide range of free variables (784), it is hard to determine a rule based ap-
proach for classification. When trying to match these images with digits classes
from 0 to 9, functions have to be declared, describing the characteristics of each
class and including the consideration of drawing scatterings. Figure 3.1 on the
following page shows a drawn grayscale image of the digit four from the MNIST
database.
To solve these kind of problems, machine learning algorithms are preferred due
to their self-learning feature behavior from the provided data. These operations
use different weights for their data transformation and offer a normalized out-
put depending on the used classification type. The computational outcome is
the representation of a class type, which can be further processed.
The most common approaches of image classification techniques are separated
into two categories, supervised and unsupervised classification KaSaAg13 To
explain the differences of those two techniques it is easier to project the fea-
tures on a two dimensional scatter diagram. A feature is a measurable property
observed from a phenomenon within the dataset. Each dot shown in figure 3.2
on the next page is representing a feature vector based on the given input val-

10

3. Classification 11

Figure 3.1: MNIST data sample illustrating the grayscale values for the number
four [McC14]

Figure 3.2: Schematic illustration of a classification in a two dimensional space,
where each color represents a separate class and the dotted lines mark the seg-
mentation borders created by the algorithm [Alb12]

ues.
Unsupervised classifications do not offer feedback on the predictions and de-
rive structures from input values into clusters, offering a more flexible process-
ing range of data. Expectation-maximization algorithms are used to find the
maximum likelihood of the structures within the committed dataset. The cre-
ated clusters are then used for reference based matches, such as provided by

3. Classification 12

Table 3.1: Example of supervised classification based on figure 3.2 on the
previous page

the Amazon services when buying products. Suggestions may appear offering
similar products based on the items placed within the shopping cart. Due to un-
predictable cluster manifestation, it is hard to post-process the classified results
and assign defined semantics for solving handwritten equations. This makes this
type of classification unsuitable for the required app tasks.
Supervised classifications are based on having preset output samples matching
the defined input values (known as training datasets). SVM and Artificial Neu-
ral Networks (ANN) are typical examples for supervised classifications. This is
achieved by initializing the weights in advance and processing the input values
with functions using the chosen parameters. If the calculated result mismatches
the expected output, the offset error is measured and the weights are readjusted
to better approximate the expected output data samples. This is also known as
the backpropagation algorithm. In terms of supervised classification, each col-
ored region from figure 3.2 on the preceding page represents a defined class;
e.g. shown in table 3.1 red could stand for the digit zero, green for the digit
one and blue for the digit two. If a new image is classified the calculated result
will be matched to the class closest to its values. Because each class is clearly
defined in advance, it is also possible to assign the expected semantics after
classification, making this type of classification suitable for the MathQ app.
Currently the preset classes are:

• digits from zero to nine
• symbols: = + - . ()

3.1 Image Pre-Processing

According to the previous example of figure 3.1 on the preceding page an im-
age of 28x28 pixels can be represented as a 784-dimensional column vector
of variables, which can be used as an input value for a determined machine
learning algorithm. Using the entire image size this way has the disadvantage
of storing many zero value pixels and can offer slow response time when using

3. Classification 13

remote web based services with higher resolutions. Also when considering the
user interactions on the mobile app, the canvas touch inputs received from the
device offers the exact positioning of the user drawing movements. This enables
to life track the input strokes and save only the entered pixel paths for further
computation. Because devices differ in their screen resolution, the size of the
canvas also varies. To be able to classify data from multiple devices, their stroke
information has to be normalized. A good approach is also to store the screen
resolution to help improve the downscaling, considering the given screen ratio.
The data normalization is achieved by the following steps:

1. Remove impurities from the stroke collection (largely offset or insignifi-
cantly small dots)

2. Downscale the pixel coordinate values from the originally entered strokes
3. Resample the pixel density to fit the unified image size
4. Normalize axis offsets for each stroke
5. Dilate and blur the stroke images to increase the help signify the corre-

sponding drawing for classification

The accuracy of the character recognition may vary according to the following
main factors:

• Image resolution of the user input
• The algorithm detecting the bounding boxes for each split character from

the equation
• The chosen classification algorithm
• Amount of training data samples for the classification

3.2 Support Vector Machine

An SVM uses labeled training data to determine n-dimensional hyperplanes sep-
arating the different classes for classifications (finding the support vectors). The
support vectors are determined by two vectors representing the hyperplane and
one extra vector used for determining the maximum distance. The algorithm
used for optimizing the hyperplanes is trying to find the maximum margins be-
tween the used support vectors by minimizing the weight vectors used for com-
putation. This optimization problem is nonlinear and can be solved by using the
Karush-Kuhn-Tucker (KKT) conditions based on Lagrange multipliers (finding
the local maxima and minima for constrained regions [Lus15]). To provide a vi-
sualizing example figure 3.3 on the next page illustrates the maximum margin
of a hyperplane for a two dimensional feature space.
The hyperplane g(~x) from figure 3.3 can be represented as stated in equa-
tion 3.1 on the following page, where ~ωT represents the weight vector, ~x the
feature vector and ω0 the weight offset.

3. Classification 14

Figure 3.3: SVM showing the maximum margin of a hyperplane for linear binary
sets [Blo10]

g(~x) = ~ωT ~x +ω0 (3.1)

The optimization problem for finding the minimum weight vector for linear
separable classes is shown in equation 3.2

minimize
~ω

1
2
|| ~ω||22

subject to ∀i yi(~ω
T ~x +ω0)− 1≥ 0

(3.2)

where yi represents the according labels of the training examples. This type of
linear decision boundary is known as hard margin, clearly separating one class
from another.
However to be able to classify features which include distortions and do not
always offer a clear separation, slack variables can be added to the equation
tolerating small classification errors. This is creating so-called soft margins as
shown in the following equation:

minimize
~ω

1
2
|| ~ω||22 +µ
∑

i

ξi

subject to ∀i − (yi(~ω
T ~x +ω0)− 1+ ξi)≤ 0,

∀i − ξi ≤ 0

. (3.3)

3. Classification 15

Figure 3.4: Non-linear separable classification problem [Sta09]

To be able to apply this method also for non-linear separable classification prob-
lems, such as shown in figure 3.4, a so-called kernel trick can be applied, per-
forming data transformations by operating in a high-dimensional feature space.
Creating the higher-dimensional feature vector φ(x) requires to define the in-
dividual operations for each parameter and may require some effort. The fol-
lowing listing offers an example how to create the new feature vector [Nöt15]:

φ : Rd → RD, D ≥ d

φ(x) =





























1

x2
1

x2
2

x1 x2

x1

x2





























(3.4)

3. Classification 16

Figure 3.5: Fully connected ANN [Mec11]

3.3 Neural Network

Artificial Neural Networks or simply Neural Networks are derived from biolog-
ical neural networks which define how the brain functions. An ANN consists
of multiple Neurons which are organized in three layer types. The first layer is
called the input layer, the last layer is called the output layer and all other lay-
ers in between are denoted as the hidden layers. Each layer, except of the input
layer, performs calculations based on its input values received from the neurons
of its previous layer. In a fully connected NN each neuron layer receives all the
neuron output values from its previous layer. Figure 3.5 shows a fully connected
neural network.
The input layer is usually only a representative layer for mapping the input
values of the feature vector (e.g. mapping the pixels of an image). The out-
put layer neurons represent the determined classes, i.e. the figure 3.5 output
neurons could be mapped to different characters or digits such as tex tOut1 =
0, tex tOut2 = 2, ...tex tOutm = x . In the hidden and output layers weighted
calculations are performed on their input values from their previous layers and
compute one output value for each neuron in their layer.
When artificial neurons where developed they where called Perceptrons (see
figure 3.6 on the following page), receiving several binary inputs and produc-
ing a single binary output. To determine the binary output of a perceptron a
threshold function is required as shown in equation 3.5 on the next page.

3. Classification 17

Figure 3.6: Perceptron example with two input values x1 and x2

[The11]

output=

¨

0 if
∑

j w j x j + b ≤ 0

1 otherwise
(3.5)

In the equation (3.5) ~w j represents the weight vector (previously self-trained
values based on training samples) which is multiplied on the feature vector ~x j
added with a negated threshold value, known as the bias b. Perceptrons where
used to implement logical gates, such as the NAND gate and by connecting them
in series more complex problems could be solved. Depending on the neurons
which have been activated, the overall behavior of the neural network shifts and
different output results are computed. The disadvantage of the simple percep-
tron model is if only one input value is too large or too low the other weighted
values may not be significantly large enough to balance the computational re-
sult and the entire network can become adulterated always calculating the same
result.
Modern NN for example use a sigmoid function for the neuron calculations
(sigmoid neuron), computing not only binary results, but also values between
0 and 1. Figure 3.7 on the next page shows the characteristics of the sigmoid
function.
The sigmoid function σ(z) is used to calculate the values of the y axis shown
in figure 3.7. The equation for the calculation is declared below:

z =
∑

j

w j x j + b

σ(z)≡
1

1+ e−z

. (3.6)

The sigmoid function makes the neuron more resistant against extremities from
the input values when performing slight changes to its weights or bias. This
avoids discontinuity at the point of unsteadiness when switching between 0
and 1 as shown in figure 3.7 on the following page.
It is necessary to fit the parameters in the network (weights, biases) such that the
actual network output is close to the expected output, which means the obtained

3. Classification 18

Figure 3.7: Sigmoid function example [Nie16]

error should be small. To achieve optimal network performance the error has
to be minimized. The typical minimization technique which is used is the so-
called stochastic gradient descent [Oha13]. For this, the error is quantized using
a cost function that has to be designed problem specifically. In order to enable
the usage of the stochastic gradient descent the cost function C must fulfill the
condition shown in the equation 3.7, allowing it to be written as an average over
the cost functions Cx for individual training samples x and it must not depend
on any activation values of the neural network other than the output values aL

of the previous layer.

C =
1
n

∑

x

Cx (3.7)

To adjust the parameters it is necessary to calculate the gradient of the cost func-
tion C with respect to the weights wl and biases bl in all layers. This parameter
optimization is called training. The training is achieved by randomly initializing
the weights at the beginning, then feeding each training sample into the net-
work to obtain the predictions. The cost function is then derived with respect
to the parameters in the output layer and because each layer depends on the
previous layers the gradient has to be backpropagated. This is done by using
the gradient from the current layer as shown in equation 3.8, where al−1 marks
the output values of the neurons in the previous layer.

∂ C

∂ wl
jk

= al−1
k δl

j

∂ C

∂ bl
j

= δl
j

(3.8)

3. Classification 19

The calculated gradient is then used to determine the direction of the steepest
descent of the corresponding cost function in dependence of wl and bl for their
update.
The following listing gives an overview of how the weights and biases are up-
dated based on the previous definitions [Nie16] :

1. Define a set of training examples by determining the input and output
values.

2. For each training example x: Set the corresponding input activation
ax ,1, and perform the following steps:

Feedforward: For each layer l = 2,3, . . . , L compute
z x ,l = wl ax ,l−1 + bl and ax ,l = σ(z x ,l).

Output error δx ,L: Compute the vector
δx ,L =∇aCx �σ′(z x ,L).

Backpropagate the
error:

For each layer l = L − 1, L − 2, . . . , 2 compute
δx ,l = ((wl+1)Tδx ,l+1)�σ′(z x ,l).

3. Gradient descent: For each l = L, L−1, . . . , 2 update the weights accord-
ing to the rule wl → wl − η

m

∑

x δ
x ,l(ax ,l−1)T and the biases according to

the rule bl → bl − η
m

∑

x δ
x ,l .

Example

The example below shows a very simple neural network written in Python with
one input layer (three neurons) and one output layer (one neuron having three
weights; bias is zero). It computes the weights according to the prediction table
3.2 and prints the result for each input value after the training is complete
(based on [Tra15]):

adding support for multi-dimensional arrays and
matrices, along with high-level mathematical functions
import numpy as np

sigmoid function
def sigmoid(x):

return 1/(1+np.exp(-x))

derivative / quadratic cost function
def deriv(x):

return x*(1-x)

input dataset
X = np.array([[0,0,1],

[0,1,1],
[1,0,1],
[1,1,1]])

output dataset
y = np.array([[0,0,1,1]]).T

3. Classification 20

Inputs Output
0 0 1 0
1 1 1 1
1 0 1 1
0 1 1 0

Table 3.2: Simple NN prediction table example

seed random numbers to make calculation deterministic
np.random.seed(1)
initialize weights randomly
weights = 2*np.random.random((3,1)) - 1

iterate 10000 epochs over the training samples
for iter in range(10000):

forward propagation of the input values
inputLayer = X
calculate the output result
outputLayer = sigmoid(np.dot(inputLayer, weights))

determine the error
error = y - outputLayer

multiply the error with the
slope of the sigmoid at the values in hiddenLayerError
delta = error * deriv(outputLayer)

update the weights of the hidden layer
weights += np.dot(inputLayer.T, delta)

print("Training output:")
print(outputLayer)

The output may be similar to the following listing:

Training output:
[[0.00966449]
[0.00786506]
[0.99358898]
[0.99211957]]

Hyper-Parameters

The training process is influenced by so-called hyper-parameters, such as learn-
ing rate, epochs of repetition, mini-batch size of training samples, etc. These
have a great influence on the success of the training process and thus the qual-
ity of the NN. It may also happen that wrong configurations or too little training
samples cause the NN to overfit or get stuck on a local minima. Suitable hyper-

3. Classification 21

parameters can sometimes only be found by empirically adjusting the values
and experimenting with the training samples.

Chapter 4

MathQ

This chapter will provide an overview of the MathQ app architecture, also in-
cluding the core implementation patterns used for the frontend, backend and
the interoperability in between. In addition it will also focus on a demo imple-
mentation regarding an object oriented neural network design.

4.1 Problem

According to the requirements the mobile application has to be implemented
using the Xamarin framework with enhanced focus on the Android platform. It
should offer touch based user interactions, allowing the user to draw mathe-
matical equations on a canvas. The input coordinates received from the device
are then stored and forwarded for further computation to the C++ based back-
end, which is performing the classification. The classified labels are returned to
the frontend to visualize the results. In addition a different functionality is re-
quired to train the used machine learning algorithm and collect data provided
by users.

4.2 Architecture

The MathQ app is a two-tiered application, offering a visual frontend for the
user interactions and a computational backend. The solution structure is split
into three main packages. The Frontend package, including the Xamarin related
projects, the Backend package, including the business logic projects and the
Common package, including the domain model and service projects, which are
shared across the Frontend and Backend.
For fast prototyping and to support multiple platforms the Xamarin.Forms ap-
proach was chosen for the mobile app frontend development. This results in
having multiple projects created when setting up a new environment. A PCL
project is created which includes the Xamarin.Forms libraries to create shared

22

4. MathQ 23

Figure 4.1: Xamarin frontend project structure

code across all supported platforms. For each supported platform a separate na-
tive representational project is also created. The project structure may look simi-
lar to the example shown in figure 4.1, splitting the projects into App (Portable),
App.Droid (Android), App.iOS, App.UWP, etc.
The backend mainly consists of native C++ projects (Dynamic Shared Libraries)
using the Android NDK to compile for the target platform. The link between the
C# and C++ codebase is a marshalling project on both ends. This also concludes
that the domain model classes have to be written in both languages. To share
objects between C# and C++ it is required to use InteropServices provided by the
.NET framework. The C# backend projects are basically build as PCL to create
a common codebase for all targets.
Figure 4.2 on the following page provides an overview of the main components
of the MathQ app. It also shows how these components are related to each other.

4.3 Design

The application design focuses on the patterns used within those modules and
provide some implementation examples.

4.3.1 Common

The common projects include the offered services and domain model classes
for the C# environment. These projects are also PCL enabling them to be used
of multiple target platforms. The domain model objects instantiated for solving
equations use a stroke based approach, storing the coordinates of the device
touch input. This is determined by creating objects of a Stroke type and adding
Point type elements to it. The collection of Stroke objects represents a draw-
ing of the corresponding equation. The service classes offer methods to train
the classification, collect data and solve equations and have a representational
implementation functioning as a delegate for the native code.

4. MathQ 24

Figure 4.2: Architecture schematics

4.3.2 Frontend

The frontend is based on Xamarin and implemented in C#. The main imple-
mentation is written within the portable codebase project used by all native
platforms. It uses the MVVM pattern to separate UI (View) related code from
the core functionality, which also enhances the testability of the workflow re-
lated classes (ViewController). The Services project represents the Model and is
instantiated by using Inversion of Control (IoC) to ensure loose coupling from
the implementation projects. This is achieved by dynamically registering and re-
trieving instances for each concrete platform implementation projects (Droid,
iOS, UWP). The currently used IoC provider is offered by the MVVM Light

4. MathQ 25

framework. To also abstract from the MVVM Light related code an own class
IoCProvider has been created based on the facade pattern, easing the possibil-
ity to replace the MVVM Light framework with other frameworks. The Android
project uses the IoCProvider class to register the targeted service implementa-
tions. The code fragment below shows the possible usage:

[Activity(Label = "App Name", MainLauncher = true)]
public class MainActivity : FormsApplicationActivity {

protected override void OnCreate(Bundle bundle) {
base.OnCreate(bundle);
// register services
InitializeServices();
// instanciate portable codebase main class
LoadApplication(new App());

}

private void InitializeServices() {
// register Android specific services
IocProvider.Register<IService, DroidNativeService>();

...
}

}

4.3.3 Interoperability

PInvoke (Platform Invoke in .NET) offers support for interoperation between
managed code running inside the CLR and unmanaged (native) code such as
used in the Win32 API or Android NDK. Managed code enables support for
garbage collection, code access security to prevent destructive actions when
loading code, machine independence due to the CIL etc. Unmanaged code runs
outside of the CLR environment as natively compiled according to the supported
CPU architecture.
Although PCL do not allow references to unportable libraries, the DllImport at-
tribute from the InteropServices is still available. This enables to write a C#
API which is calling native C++ code. The declaration of the interoperation call
from C# may look similar to the code in the listing below. The example defines
a class Point which has two properties x and y. It represents a domain model
object and may be used for C# based service interfaces. When used for a native
call, it has to be mapped to a data type, which is known by both languages. This
means that the C# Point class has to be converted into a struct object. Structs
can be marshalled and referenced via pointer types and therefore are suitable
as parameters for interoperability calls. Also some value types such as int, float,
bool, etc. are suitable for interoperability with C++. The resulting IntPtr object
has is also marshalled back to a t_point object and can then be converted back
to a C# Point type.

using System;

4. MathQ 26

using System.Runtime.InteropServices;

namespace App {
public class Point {

public int X { get; set; }
public int Y { get; set; }

}

public class MarshallingExample {
// The Attribute specifies that the fields layout in the memory
// is in the same order as at its declarations
[StructLayout(LayoutKind.Sequential)]
struct t_point {

public int x;
public int y;

}

[DllImport("NativeCodeExample")]
public static extern IntPtr add(IntPtr pointA, IntPtr pointB);

[DllImport("NativeCodeExample")]
public static extern void free_alloc_memory();

public Point Add(Point pointA, Point pointB) {
// map the Point class to the t_point struct
var t_pa = new t_point {x = pointA.X, y = pointA.Y};
var t_pb = new t_point {x = pointB.X, y = pointB.Y};
// allocate memory for the struct objects
var paPtr = Marshal.AllocHGlobal(Marshal.SizeOf(t_pa));
var pbPtr = Marshal.AllocHGlobal(Marshal.SizeOf(t_pb));
try {

// marshal the struct pointer with the actual data struct
Marshal.StructureToPtr(t_pa, paPtr, false);
Marshal.StructureToPtr(t_pb, pbPtr, false);
// call the native API
IntPtr resultPtr = add(paPtr, pbPtr);
// marshal the pointer result back to the data struct
var result =

(t_point)Marshal.PtrToStructure(resultPtr, typeof (t_point));
// map the t_point struct to the Point class
return new Point {X = result.x, Y = result.y};

} finally {
// free allocated memory from C#
if (paPtr != IntPtr.Zero)

Marshal.FreeHGlobal(paPtr);
if (pbPtr != IntPtr.Zero)

Marshal.FreeHGlobal(pbPtr);
// free allocated memory from C++
free_alloc_memory();

}
}

}
}

4. MathQ 27

The DllImport attribute references the name of the assembly containing the
native API. The add method must be declared as static, extern and have a type
suitable signature with the unmanaged code assembly. The input and return
parameters of the method are of type IntPtr, which represent a generic address
pointer. This interface of the C++ code is declared as stated below:

#pragma once

struct t_point {
int x;
int y;

};

extern "C" t_point* add(t_point *pointA, t_point *pointB);
extern "C" void free_alloc_memory();

The IntPtr address from the C# code is used by the InteropServices to refer-
ence at the corresponding t_point values in memory, allowing to access the data
within the structures.

#include "Interface.h"
#include <vector>

using namespace std;

// store the pointers ready to be removed
static vector<void*> alloc_mem_ptrs;

t_point* add(t_point *pointA, t_point *pointB) {
auto result = new t_point;
result->x = pointA->x + pointB->x;
result->y = pointA->y + pointB->y;
// safe the object reference to call the free_alloc_memory
// method after the usage is done
alloc_mem_ptrs.push_back(result);
return result;

}

void free_alloc_memory() {
// delete all added objects
for (auto it = alloc_mem_ptrs.rbegin();

it != alloc_mem_ptrs.rend();
++it) {

delete *it;
}
// remove pointers from vector
alloc_mem_ptrs.clear();

}

It is very important to safe references to allocated objects and to delete them
from the memory, otherwise the application will create memory leaks.
The usage of the interoperability API may look similar to the following example:

var marshal = new MarshallingExample();

4. MathQ 28

var result = marshal.Add(
new Point {X = 1, Y = 2},
new Point {X = 3, Y = 1});

// Prints the following to the console: X: 4, Y: 3
Console.WriteLine(\$"X: {result.X}, Y: {result.Y}");

Conditions

Using PInvoke with the Android NDK requires to create C++ based Cross-platform
Android projects in Visual Studio. In addition some project settings have to be
modified, which includes using the GCC for compilation, setting some linker
options, defining the target Android API level and exporting shared object (.so)
files instead of dynamically linked library (.dll) files. Shared object files are re-
quired to be included in the linking list at compile time.
Using PInvoke with Win32 libraries requires to declare __declspec(dllimport)
and __stdcall to the method signatures in the header files:

...
extern "C" __declspec(dllimport) t_point* __stdcall add(t_point *pointA,

t_point *pointB);
...

4.3.4 Backend

The backend includes a marshaller converting the interoperability struct objects
to the native domain model objects. Furthermore a dispatcher is implemented
using the command pattern to create commands steering the classification pro-
cess. This also allows a more flexible implementation, when adding multiple
workflow sequences to the existing implementation. The classification may con-
tain a SVM or NN implementation based on chapter 3 and retrieves the predicted
result after the command execution back to the marshaller.

Chapter 5

Conclusion

5.1 Evaluation

Xamarin

Cross-platform development with Xamarin is extremely beneficial, saving time
and costs when prototyping a new software solution for multiple target plat-
forms. Also the achieved performances at runtime do not compromise in com-
parison to natively developed applications. The downside is that there are still
some instabilities with the development environment and that not all XAML
features are supported when using Xamarin Forms compared to the WPF. Also
the overall architectural complexity grows rapidly and it may become a great
challenge to handle errors at compile time or runtime. Furthermore, when us-
ing native C++ code it is fairly hard to debug and determine the origins of the
occurring issues.

SVM vs Neural Network

Currently SVMs are more often used due to fewer hyper-parameters and be-
cause they are guaranteed to find the global optimum, not only the local one.
But NN are gaining more and more importance due to their extreme flexible
and adaptive feature learning of basically any data structure and because they
do not require to manually derive features. In addition a well trained NN can
learn much faster and achieve a higher classification accuracy with less training
datasets in comparison to a SVM.

5.2 Future Work

Currently the backend only splits the drawn equation into associated stroke
parts, which then are classified to the determined characters. The resulting val-
ues are then concatenated and returned as a string representation of the equa-
tion for visualization. To be able to compute a drawn equation it is necessary

29

5. Conclusion 30

to determine the semantics of each symbol. This requires structural analysis of
the drawing and building up a AST, which then evaluates the detected state-
ments. In addition also the set of character can be increased to support more
characters. The implementation of the backend may also be ported to the C#
environment as a PCL to support all target platforms and avoid marshalling
between managed and unmanaged code.

5.3 Experiences

Xamarin

Although there are still some issues, it was a great experience to develop an App
with Xamarin and I definitively can recommend everyone to give it a try. I also
believe it will become more and more widespread, due to its great integration in
a very profound development environment and it will improve the functionality
of its framework.

Machine Learning

Machine learning is a very interesting topic and enables a huge field for re-
searching and experiments with very complex data models. In my opinion it
seems to become even more adopted not only by large companies, such as
Siemens, Facebook, Microsoft or Google, but also by medium-sized companies.
The data that can be processed using learning algorithms is very important not
only for predicting the overall user behavior to determine market trends, but
also to develop more sophisticated solutions for customer needs. On the other
hand it is also very difficult to determine which problems can and cannot be
solved using machine learning techniques, such as SVM or NN. Not all prob-
lems are suitable and not all solutions may compute a satisfactory result in an
appropriate time-frame. In addition it may also be a very time consuming task to
implement a customized and very performing solution, requiring a lot of knowl-
edge and experience. I considered the hardest part not related to understanding
or using a functioning ANN or SVM, but it is very challenging to perform the
transition from a theoretical model to a customized implementation and finding
suitable parameters to achieve an optimized result. Nevertheless this thesis was
an great experience and I will definitely continue studying this field.

Development Process

The MathQ project was developed using Scrum. Every Sprint was scheduled for
a two weeks period and included Daily Scrum meetings to keep track of the
current development progress. Because the tasks were well defined at the be-
ginning, it was straightforward to keep up with the estimated time schedule. To

5. Conclusion 31

avoid higher learning curves and keep in direct sync with the other teammates,
no electronic means were used for the Product Backlog.

References

Literature

[Alb12] Davide Albanese. High-performance library built using the Python
programming language. Softpedia. 2012. URL: http : / / www .
softpedia . com / get / Programming / Components - Libraries / mlpy.
shtml.

[Blo10] Mathieu Blondel. Machine Learning, Data Mining, Natural Language
Processing. Mathieu’s log. 2010. URL: http://www.mblondel.org/
journal/2010/09/19/support-vector-machines-in-python/.

[edx16] edx Inc. Introduction to Xamarin.Forms. Online Courses. 2016. URL:
https://courses.edx.org/courses/course-v1:Microsoft+DEV215x+
1T2016/info.

[Gut16] Scott Guthrie. Microsoft to acquire Xamarin and empower more de-
velopers to build on any device. Tech. rep. 2016. URL: http://blogs.
microsoft.com/blog/2016/02/24/microsoft- to-acquire-xamarin-
and-empower-more-developers-to-build-apps-on-any-device/#sm.
00019758clfs1drgxwh1qe9i9232j.

[Liu08] Cheng-Lin Liu. Classification and Learning Methods for Character
Recognition: Advances and Remaining Problems, Chapter Machine
Learning in Document Analysis and Recognition Volume 90 of the series
Studies in Computational Intelligence pp 139-161, Springer. 2008.

[Lus15] Richard Lusby. Karush-Kuhn-Tucker Conditions, DTU Management
Engineering. University Lecture: 42111 Static and Dynamic Opti-
mization. 2015. URL: http://www.kurser.dtu.dk/2015-2016/42111.
aspx?menulanguage=en-gb.

[McC14] James D. McCaffrey. Working with the MNIST Image Recognition Data
Set. James D. McCaffrey Blog. 2014. URL: https://jamesmccaffrey.
wordpress . com / 2014 / 06 / 10 / working - with - the - mnist - image -
recognition-data-set/.

32

http://www.softpedia.com/get/Programming/Components-Libraries/mlpy.shtml
http://www.softpedia.com/get/Programming/Components-Libraries/mlpy.shtml
http://www.softpedia.com/get/Programming/Components-Libraries/mlpy.shtml
http://www.mblondel.org/journal/2010/09/19/support-vector-machines-in-python/
http://www.mblondel.org/journal/2010/09/19/support-vector-machines-in-python/
https://courses.edx.org/courses/course-v1:Microsoft+DEV215x+1T2016/info
https://courses.edx.org/courses/course-v1:Microsoft+DEV215x+1T2016/info
http://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/#sm.00019758clfs1drgxwh1qe9i9232j
http://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/#sm.00019758clfs1drgxwh1qe9i9232j
http://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/#sm.00019758clfs1drgxwh1qe9i9232j
http://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device/#sm.00019758clfs1drgxwh1qe9i9232j
http://www.kurser.dtu.dk/2015-2016/42111.aspx?menulanguage=en-gb
http://www.kurser.dtu.dk/2015-2016/42111.aspx?menulanguage=en-gb
https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set/
https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set/
https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set/

References 33

[Mec11] Mechanical Forex. Neural Networks in Trading. Mechanical Forex.
2011. URL: http://mechanicalforex.com/2011/06/neural-networks-
in- trading-how-to-design-a-network- for-financial- forecasting- in-
eight-simple-steps.html.

[Nie16] Michael A. Nielsen. “Neural Networks and Deep Learning”. In:
(2016). URL: http://neuralnetworksanddeeplearning.com/.

[Nöt15] Elmar Nöth. Pattern Recognition. University Lecture: Friedrich-
Alexander-Universität Erlangen-Nürnberg, Chair of Computer Sci-
ence 5. 2015. URL: http://univis.uni- erlangen.de/formbot/dsc_
3Danew_2Fresrep_26dir_3Dtech_2FIMMD_2FIMMD5_26ref_
3Dresrep_26lang_3Den.

[Oha13] Tong Zhang Ohad Shamir. Stochastic Gradient Descent for Non-
smooth Optimization: Convergence Results and Optimal Averaging
Schemes, JMLR Workshop and Conference Proceedings Volume 28: Pro-
ceedings of The 30th International Conference on Machine Learning:
71-79, ICML. 2013.

[Opt15] Optimus Information Inc. Cross-Platform Framework Comparison.
Tech. rep. 2015. URL: http : / / www . optimusinfo . com / blog /
cross - platform- framework - comparison - xamarin - vs - titanium- vs -
phonegap/.

[Sta09] StackOverflow. Difference between a linear problem and a non-linear
problem. StackOverflow. 2009. URL: http : / / stackoverflow . com /
questions/1148513/difference- between- a- linear- problem- and- a-
non-linear-problem-essence-of-dot-pro.

[Sta15] Statista GmbH. Income for mobile apps in Germany. Tech. rep. 2015.
URL: http : / / de . statista . com / statistik / daten / studie / 173810 /
umfrage/umsatz-mit-mobilen-apps-in-deutschland-seit-2009/.

[The11] The Glowing Python. The Perceptron. The Glowing Python. 2011.
URL: http ://glowingpython .blogspot .com/2011/10/perceptron .
html.

[Tra15] Trask. A Neural Network in 11 lines of Python. iamtrask Github.
2015. URL: http://iamtrask.github.io/2015/07/12/basic-python-
network/.

[Xam16] Xamarin Inc. Xamarin Documentation. Tech. rep. 2016. URL: https:
//developer.xamarin.com/guides.

http://mechanicalforex.com/2011/06/neural-networks-in-trading-how-to-design-a-network-for-financial-forecasting-in-eight-simple-steps.html
http://mechanicalforex.com/2011/06/neural-networks-in-trading-how-to-design-a-network-for-financial-forecasting-in-eight-simple-steps.html
http://mechanicalforex.com/2011/06/neural-networks-in-trading-how-to-design-a-network-for-financial-forecasting-in-eight-simple-steps.html
http://neuralnetworksanddeeplearning.com/
http://univis.uni-erlangen.de/formbot/dsc_3Danew_2Fresrep_26dir_3Dtech_2FIMMD_2FIMMD5_26ref_3Dresrep_26lang_3Den
http://univis.uni-erlangen.de/formbot/dsc_3Danew_2Fresrep_26dir_3Dtech_2FIMMD_2FIMMD5_26ref_3Dresrep_26lang_3Den
http://univis.uni-erlangen.de/formbot/dsc_3Danew_2Fresrep_26dir_3Dtech_2FIMMD_2FIMMD5_26ref_3Dresrep_26lang_3Den
http://www.optimusinfo.com/blog/cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/
http://www.optimusinfo.com/blog/cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/
http://www.optimusinfo.com/blog/cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/
http://stackoverflow.com/questions/1148513/difference-between-a-linear-problem-and-a-non-linear-problem-essence-of-dot-pro
http://stackoverflow.com/questions/1148513/difference-between-a-linear-problem-and-a-non-linear-problem-essence-of-dot-pro
http://stackoverflow.com/questions/1148513/difference-between-a-linear-problem-and-a-non-linear-problem-essence-of-dot-pro
http://de.statista.com/statistik/daten/studie/173810/umfrage/umsatz-mit-mobilen-apps-in-deutschland-seit-2009/
http://de.statista.com/statistik/daten/studie/173810/umfrage/umsatz-mit-mobilen-apps-in-deutschland-seit-2009/
http://glowingpython.blogspot.com/2011/10/perceptron.html
http://glowingpython.blogspot.com/2011/10/perceptron.html
http://iamtrask.github.io/2015/07/12/basic-python-network/
http://iamtrask.github.io/2015/07/12/basic-python-network/
https://developer.xamarin.com/guides
https://developer.xamarin.com/guides

Acronyms

ANN Artificial Neural Network.
API Application Program Interface.
AST Abstract Syntax Tree.
ATG Attributed Grammar.
AXML Article XML Markup Language.
CIL Common Intermediate Language.
CLI Common Language Infrastructure.
CLR Common Language Runtime.
CPU Central Processing Unit.
GCC GNU Compiler Collection.
IDE Integrated Development Environment.
IoC Inversion of Control.
KKT Karush-Kuhn-Tucker.
MER Mathematical Equation Recognition.
MNIST Mixed National Institute of Standards and Tech-

nology.
MVVM Model-View-ViewModel.
NDK Native Development Kit.
NN Neural Network.
PCL Portable Class Library.
SDK Software Development Kit.
SME Small and Medium-Sized Enterprises.
SVM Support Vector Machine.
UI User Interface.
UWP Universal Windows Platform.
WPF Windows Presentation Foundation.
XAML Extensible Application Markup Language.

34

Glossary

Abstract Syntax Tree A tree representation of the syntactic source code struc-
ture.

Attributed Grammar Formal grammar description of a specified programming
language with attached attributes, which are evaluated within the AST
nodes by a parser or compiler.

CodeDom Microsoft’s language independent Object-model used for automated
source code generators.

Mono Open source implementation of the ECMA-335 standard, based on the
CLI.

Xamarin Framework for cross-platform application development.

35

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

36

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Siemens Corporation Corporate Technology
	Background
	Motivation
	Goal
	Target
	Structure

	Xamarin
	Portable Class Library vs Shared Projects
	Xamarin.Forms
	Xamarin.Android
	Xamarin.iOS
	Xamarin.UWP

	Classification
	Image Pre-Processing
	Support Vector Machine
	Neural Network

	MathQ
	Problem
	Architecture
	Design
	Common
	Frontend
	Interoperability
	Backend

	Conclusion
	Evaluation
	Future Work
	Experiences

	References
	Acronym
	Glossary

