
Cross-Language Compiler using Roslyn
and Coco/R for the Common Language

Runtime

Marius C. Dinu

B A C H E L O R A R B E I T

Nr. 1310307054-B

eingereicht am
Fachhochschul-Bachelorstudiengang

Software Engineering

in Hagenberg

im Februar 2016

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, February 1, 2016

Marius C. Dinu

i

Contents

Declaration i

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Scope . 2
1.4 Target . 3
1.5 Goal . 3
1.6 Structure . 3

2 .NET framework 5
2.1 Common Language Infrastructure 6

2.1.1 Common Type System 6
2.1.2 Common Language Specification 8
2.1.3 Metadata . 8
2.1.4 Common Intermediate Language 9
2.1.5 Common Language Runtime 10
2.1.6 Virtual Execution System 11

2.2 Conclusion . 11

3 Roslyn 12
3.1 Compiler-as-a-Service . 12

3.1.1 Compiler Pipeline . 13
3.1.2 Compiler API . 13
3.1.3 Language Service . 13

3.2 API . 14
3.3 Syntax Tree . 14

3.3.1 Syntax Nodes . 16
3.3.2 Syntax Tokens . 16
3.3.3 Syntax Trivia . 16

ii

Contents iii

3.3.4 Spans . 16
3.3.5 Kinds . 16
3.3.6 Errors . 17

3.4 Using the Roslyn API . 17
3.5 Semantics . 17
3.6 Conclusion . 18

4 Attributed Grammar 19
4.1 Coco/R . 19
4.2 Conclusion . 22

5 XCompilR 23
5.1 Problem of Language Interoperability 23
5.2 Requirements . 24
5.3 Design . 24
5.4 Immutable Syntax Tree . 25
5.5 Architecture . 25
5.6 Implementation . 27

5.6.1 Dynamic Objects . 28
5.6.2 XCompileAttribute . 29
5.6.3 Parser . 31
5.6.4 Exception handling and logging 34

5.7 Evaluation . 35

6 Conclusion 36
6.1 Future Work . 36

6.1.1 Syntax tree building helpers 37
6.1.2 Code completion for ATG files 37
6.1.3 Visual Studio Extension 37
6.1.4 Performance improvements 37

6.2 Experiences . 38

References 39
Literature . 39
Acronym . 41
Glossary . 43

Abstract

Interoperability and code generation has become one of the main topics for
nowadays modern frameworks, which have to provide various Application
Programming Interfaces (APIs) and ways to translate, parse, bind and in-
stantiate objects at compile time and runtime. At the center of all these
frameworks mechanisms, concepts such as Reflection, lexical analyzers, syn-
tax trees and dynamic bindings are included. These principles are used to
solve problems related to cross-language operations or integration not only
of languages, but also platform compliant libraries to create a flexible and
agile development environment. In some cases it is also relevant to migrate
from existing legacy code or programming languages, including the task to
remain cost and time efficient.
Although many frameworks offer highly optimized features for the above
mentioned requests, they often only cover partial aspects of the require-
ments, mostly related to cross-language limitations. In many cases only
static language parsing or dynamic syntax tree analysis is provided, but
the combination of both aspects is hardly found.
These main aspects reviewed by this thesis are the usage of the Microsoft
.NET framework for cross-compiling languages at runtime, building syntax
trees for analysis and adaption to extend the functionality of the .NET plat-
form including the providence of flexible and extensible ways for operations
with multiple libraries in different source languages from one platform.
All the experiences and results gained from this work are published and
freely available as an open-source solution on GitHub (https://github.com/
Xpitfire/CrossCompile).

iv

https://github.com/Xpitfire/CrossCompile
https://github.com/Xpitfire/CrossCompile

Kurzfassung

Heutzutage ist Interoperabilität und Code-Generierung eines der wichtigsten
Funktionalitäten von modernen Frameworks geworden. Diese bieten eine
Vielfalt an APIs und Möglichkeiten Übersetzungen bzw. kompilierte Ein-
heiten zu Objektinstanzen zur Laufzeit einzubinden. Im Zentrum all dieser
Frameworks befinden sich meist Mechanismen wie Reflection, lexikalische
Analysen, Syntaxbäume und dynamische Objektbindungen. Diese Elemente
werden benötigt um sprachübergreifende Kompilierungen bzw. nicht nur
Sprachintegrationen, sondern auch gesamte Bibliotheken in eine Laufzei-
tumgebung zu integrieren, welche für flexible und agile Entwicklungsmetho-
den benötigt werden. In manchen Fällen ist es auch nötig alten Quellcode in
neue Projekte zu portieren. Dies sollte auf kostenergonomische und effiziente
Weise geschehen und wenig Zeit in Anspruch nehmen.
Obwohl viele Frameworks hochoptimierte Funktionalitäten für die erwähn-
ten Anforderungen zur Verfügung stellen, decken diese meist nur Teilaspekte
der Gesamtlösung ab. In den meisten Fällen sind diese Limitierungen sprachbe-
dingt. Es werden oftmals nur statische Modalitäten für Kompiliervorgänge
offeriert oder nur dynamische Syntaxanalysen zur Laufzeit, jedoch selten
eine Kombination aus beiden Aspekten.
Der Kernbereich dieser Arbeit befasst sich mit der Verwendung der Mi-
crosoft .NET Plattform für die Sprachen Cross-Kompilierung zur Laufzeit.
Des Weiteren werden Syntaxbäume für Analysen und Adaptionen als Er-
weiterung dieser Plattform erläutert. Diese bieten Funktionalitäten für eine
flexible Interaktionen mit unterschiedlichen Bibliotheken und Sprachquellen.
Alle Fortschritte und gewonnenen Erkenntnisse dieser Arbeit sind veröf-
fentlicht worden und als Open-Source Variante auf GitHub (https://github.
com/Xpitfire/CrossCompile) frei zum Download bereitgestellt.

v

https://github.com/Xpitfire/CrossCompile
https://github.com/Xpitfire/CrossCompile

Chapter 1

Introduction

Throughout history many programming languages have come and gone, but
in the last decade various languages have focused on some dedicated fields of
applications. When we are talking about the Java programming language,
then it seems natural to assume that we are seeking for cross platform source
code interoperability. When Microsoft introduced the C# programming lan-
guage they had set their focus only on their proprietary operating system
Windows. This brought advantages, such as flexibility with byte code adap-
tion and feature extensibility and resulted in significant performance im-
provements in certain fields.

1.1 Background
The examples above focus only on the initial motivation, but throughout all
of nowadays common programming languages their frameworks experienced
a tremendous growth. The .NET framework surpassed the mark of 5000
classes long ago and with every update the amount is getting bigger and
bigger and for Java it is the same. From the perspective of a company,
which made a technology decision in the past and now reconsiders their
choice, this can be quite unpleasant to encounter. Developers do not only
have to deal with a new language, they also have to deal with a complex
and constantly growing framework.

1.2 Motivation
Besides maintainability and extensibility, code reuse is one of the main topics
in nowadays companies. This does not only accord to cross platform require-
ments, it also occurs on the same operating system using multiple applica-
tions, which are programmed in different programming languages. Frame-
works usually provide web service interoperability features and dedicated
interfaces for interoperability, such as JNI [Ora15] for Java or JNBridge

1

1. Introduction 2

[JNB15] for C#, to load cross language code from pre-compiled libraries.
In case of web services [ISO15], the frameworks require a huge overhead
of pre-conditions; sockets, web servers, managed containers, etc. The JNI
[Ora15] and JNBridge [JNB15] solutions bring great possibilities for code
reuse with more or less little overhead, but have the disadvantage that only
compiled code can be used for execution.
Since 2002, with the first release of the .NET framework, Microsoft brought
in an interesting concept, called the Common Language Infrastructure (CLI).
This enabled the possibility of cross language programming on a single
framework. The frameworks libraries can be accessed throughout all the
supported implementations following the CLI specification. When compil-
ing C# or C++/CLI code the resulting output format is called Intermediate
Language (IL) code. The IL-Code can then be run with the corresponding
Common Language Runtime (CLR) implementation [Ecm12].
With this architecture it was also possible to derive an open source imple-
mentation (Mono) of the .NET framework, which is cross platform compati-
ble and which enables to run C# code on Linux and Mac. Furthermore, since
2014, Microsoft Open Technologies have started a .NET Compiler Platform
(“Roslyn”) [Mic15], which enables the possibility to create an Abstract Syn-
tax Tree (AST) to integrate own languages into the .NET platform, without
requiring to work on IL code levels. Besides that it allows to create code at
runtime using the CodeDOM implementation of the .NET framework.

1.3 Scope
The current version of the Roslyn project still requires a lot of manual cod-
ing to create an AST and it is also highly focused on creating code only at
runtime. With that in mind, the scope of this bachelor thesis is to develop
a proof of concept framework, which allows to include any kind of program-
ming language, after parsing its corresponding Attributed Grammar (ATG)
file at design time. This will allow to create an executable in C# referencing
to foreign programming languages source code. C# classes can be attributed
and will be used to dynamically bind members from foreign programming
languages into newly created object instances. This requires the implemen-
tation of a framework, which binds cross language files, by interpreting the
attributes from the denoted classes and pre-compiling the corresponding
ATG files to create a parser and add the cross language members, via dy-
namic objects, to the current C# instance objects. The user can live code,
create new objects and use newly bound members from another language,
such as JavaScript, Perl or any other language, while developing in his known
C# environment.

1. Introduction 3

1.4 Target
This bachelor thesis targets software developers, which have experience with
language integration into the .NET environment or are interested into learn-
ing how to integrate a new programming language into the .NET environ-
ment using the Roslyn project.
This thesis requires

• knowledge about ATG
• profound knowledge of the C# programming language
• knowledge about object-oriented, component and aspect-oriented de-

velopment and
• knowledge about common programming design patterns

1.5 Goal
The following points will be covered by this thesis:

• analyze the architecture of the .NET framework
• describe the benefits of the .NET Compiler Platform (“Roslyn”)
• give an overview of Compiler Generators
• describe the dynamic objects and member bindings used by XCompilR
• illustrate how code generation will be realized with Coco/R and the

Roslyn platform
• examine how to scan, parse and bind foreign code to C# dynamic

objects at design-time
• summarize the design, implementation and deployment of the software

solution
• capture an outlook for future real-world applications

1.6 Structure
The first section will describe the CLR structure of the Microsoft .NET
framework in Chapter 2. This includes a description of the Common Type
System (CTS) and further architectural standards.
Chapter 3 describes the Roslyn project and provides an overview how to use
it to visualize and generate code.
Chapter 4 will summarize the basics of ATG using LL(1) grammar types
with Coco/R as a Compiler Generator.
The Chapter XCompilR illustrates the design of the XCompilR architecture,
its processing sequences during compilation and outlines a simple language
integration, specially designed for the XCompilR framework for interoper-
ability between C# and other languages. This includes a more detailed re-

1. Introduction 4

flection on how to use Coco/R ATG and how to add semantic meaning to
the self-defined demo ATG language. Related to Coco/R, a description will
be provided how to build an AST for Roslyn. Followed by the description
of how foreign language members are included into C# object instances by
using dynamic object bindings.
Chapter 6 reviews the development results and gives an overview about
future work, which can be performed in this field.

Chapter 2

.NET framework

The development of the .NET framework was initiated in the late 90s and
the first beta version (.NET 1.0) was published in late 2000, alongside with
the ISO standardization of the CLI , an open specification developed by
Microsoft and external parties [Küh13].
The .NET framework consists of multiple components, which can be accessed
from multiple CLI compliant languages. Figure 2.1 on the following page
shows an overview of the .NET main components. The CLR marks the
base of the .NET framework stack and functions as the executing instance
for the IL code. The features expanded from version to version and enable
possibilities starting form basic algorithmic libraries, such as mathematical
operations, up to concurrent multi-threaded programming solutions.
The CLI defines how executable code of multiple high-level languages can
be run on different computer platforms due to its runtime environment ab-
straction. Language specific code is translated to a CLI and can be executed
by the CLR. Furthermore, code that has been written in one language sup-
ported by the .NET framework can be reused from another .NET compliant
language. This enables the possibility for interoperability between class li-
braries from C#, VB.NET, C++/CLI, etc. as long as the languages adopt to
the rules of the CTS .
Originally the .NET framework was purposed for the Microsoft Windows
platform, although nowadays there are different derivations available to
other operating systems. Microsoft has initiated the .NET Core open-source
project, which supports Mac OS X and Linux systems. Additionally to Mi-
crosoft’s .NET Core initiative an open-source project called Mono followed
the same intention, which created a .NET compatible runtime environment
also available for Mac and Linux.

5

2. .NET framework 6

Figure 2.1: .NET framework stack overview [Wik15]

2.1 Common Language Infrastructure
The CLI consists of the following main elements: CTS , Metadata, Common
Language Specification (CLS), Virtual Execution System (VES) and Com-
mon Intermediate Language (CIL) and specifies the executable that runs on
the provided VES . The core of the CLI is defined by the CTS , which is
used by multiple compilers for declaring, using and managing types across
various languages [Sch11].

2.1.1 Common Type System

The CTS defines language interoperability rules for CTS compliant types
including their external visibility across multiple assembly parts. Further-
more it describes values, which have to follow a defined contract and al-
lows support for many programming paradigms, such as object-oriented
programming, functional and procedural programming. It consists of two
entity kinds, objects and values. The value types are self-contained types
representing integers, floating point numbers or boolean logic without refer-
ence to other types, while the object types represent more. They do not only

2. .NET framework 7

CIL assembler name class library name Description
bool System.Boolean True/false value
char System.Char Unicode 16-bit char
object System.Object Object type
string System.String Unicode string
float32 System.Single 32-bit float
float64 System.Double 64-bit float
int16 System.Int16 Signed 16-bit integer
int32 System.Int32 Signed 32-bit integer
int64 System.Int64 Signed 64-bit integer
native int System.IntPtr Signed integer
unsigned int8 System.Byte Unsigned 8-bit integer

Table 2.1: CLS compliant value and reference types [Ecm12]

have information about their own types, they can also store references to
other object or value types and while their content may change when per-
forming operations on them, their own type information remains consistent.
These types are also known as reference types [Ecm12]. There are four kinds
of reference types:

Object types: A self-describing reference type
Interface types: A Partial description of a value
Built-in reference types: VES supported integral parts of the CTS
Pointer types: A machine address representation of a value

at compile-time, including managed and un-
managed pointer

Figure 2.2 on the next page provides an overview of the type system available
by the CTS and table 2.1 provides an overview of the CLS compliant types.
Managed pointers are not exactly data types, they can be interpreted as
modifiers for data types. They do not point directly to the beginning of an
object or array type, like object reference pointers, they point at the values
inside the objects. These can only be used for local variables, parameters
of methods or a return value of a method. The C# programming language
provides an explicit declaration of a managed pointer with the out keyword.
Whereas explicit managed pointer declarations as class members cannot be
declared.
In comparison to the Java byte code a CTS compliant language operating
with generics has the possibility for generic placeholder metadata informa-
tion after compilation and does not lose any generic type information. These
types are also statically checkable after the point of definition. In addition
the CLI itself provides type-safe covariant and contravariant generic param-

2. .NET framework 8

Figure 2.2: Type System [Ecm12]

eters.

2.1.2 Common Language Specification

The CLS represents the document specification, which describes how to
integrate programming languages into the IL code. It includes rules for the
compliance to the CLI for tool- and compiler-builders. These rules contain
language case-sensitivity, naming patterns, supported encodings, operational
functionality, method and operator overloadings.

2.1.3 Metadata

In order to declare new types for the CLI the CTS expresses such informa-
tion into metadata. This allows the CLI to locate or load classes, resolve
method invocations, translate CLI to native code and set up runtime con-
text boundaries. This is only relevant for tool or compiler builders. However
for a better understanding of how the CLI works it is helpful to know that
component-specific metadata contains self-describing information for the ref-
erence related objects. CLI components and other files are packaged together
and deployed as an assembly, which contains all the logical information for
functionality and which can be run under the CLR.
Figure 2.3 on the next page illustrates an overview of an assembly structure
referencing multiple internal modules. As a simple abstraction a module
includes metadata and IL code. The metadata handles the logical links be-

2. .NET framework 9

Figure 2.3: IL assembly overview [Lin14]

tween all used modules. The prime module represents an executable unit
which can be run by the CLR.

2.1.4 Common Intermediate Language

The CIL or simply IL represents the lowest-level programming language
within the Microsoft .NET framework and is the base for all above imple-
mented languages, such as C++/CLI or C#. The IL code includes all the CLI
defined specifications to provide a wide programming language functionality
coverage, including the concept of classes, field declarations, module imports,
exception handling and further more. The following code snippet shows a
simple Hello World program, written in IL code.

.assembly extern mscorlib {}

.assembly Hello {}

.module Hello.exe

.class Hello.Program
extends [mscorlib]System.Object
{

.method static void Main(string[] args)
cil managed
{

2. .NET framework 10

.entrypoint
ldstr "Hello World"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}

The main characteristic of the IL code is the dot prefix notation at the as-
sembler directives. The first directive informs the assembler that the mscorlib
is required, which is used to access the upcoming WriteLine method.

.assembly extern mscorlib {}

By analyzing the first line it is now becoming clear that the IL code itself
has access to the entire .NET framework managed code libraries, regardless
in which higher-level language they where previously written. The next lines
declare the name of the assembly and that it is executable.

.assembly Hello {}

.module Hello.exe

Afterwards the class name and the base class object from which it inherits
are declared.

.class Hello.Program
extends [mscorlib]System.Object

The following directive specifies the main program entry method.
.method static void Main(string[] args)
cil managed
{

.entrypoint

The next step is the declaration of a stack variable with the included string
Hello World and the call of the framework method WriteLine to print to
the console.

ldstr "Hello World"
call void [mscorlib]System.Console::WriteLine(string)

The last ret declaration defines the return statement of the method.

2.1.5 Common Language Runtime

The CLR is the virtual machine component of the .NET framework and
executes CLI compliant assemblies. A language compiled for targeting the
CLR is called managed code and it enables features for cross-language inte-
gration, exception handling, services for various security aspects, versioning
and deployment support. It also handles references for objects and provides
Garbage Collection (GC). The CLR is a particular implementation of the
CLI specified VES .

2. .NET framework 11

2.1.6 Virtual Execution System

The VES is the standardized virtual machine specification of the CLI , which
implements the CTS models to load, manage and execute assemblies. It uses
the metadata to connect the separately generated modules at runtime. The
supported data types are listed within table 2.1.

2.2 Conclusion
The lowest layer represents the IL code itself and is relevant to add new
languages to .NET or to build tools and compilers for new languages. The
Roslyn chapter will illustrate a more profound way to analyze, visualize and
even integrate code into .NET using Roslyn, Microsoft’s Compiler Platform.

Chapter 3

Roslyn

Roslyn is Microsoft’s new Compiler Platform of 2012, whereas the first Com-
munity Technology Preview (CTP) was released in October 2011. It has
been developed for several years. On base of Roslyn also the compilers for
C# and Visual Basic have been re-written in their own representative lan-
guage to fully support the new language services provided. Microsoft refers
to the Roslyn project as a Compiler-as-a-Service platform. It does not op-
erate as a black box compared to conventional compilers, performing some
operations on committed input values and returning compiled output bi-
nary code. Roslyn offers many possibilities to interact and intercept with
the actively analyzed input and transparently modeling atop of it. It ex-
poses information regarding the source code parsing process, the meanings
from semantic analysis, the bindings between processed elements and finally
the IL emitting outcome.
This enables the possibility for all developers using the Visual Studio plat-
form to create and provide new NuGet or VSIX extensions and even cre-
ate their own IntelliSense solutions. For C# or Visual Basic developers the
knowledge about IL code and assemblers becomes irrelevant, because Roslyn
handles all the translation between AST and IL code. The developer can
focus on coding in his language of choice and does not have to worry about
lower-level conventions.

3.1 Compiler-as-a-Service
Roslyn exposes the compiler code analysis for C# and Visual Basic devel-
opers via three main API layers. As shown in Figure 3.1 on the following
page.
The Compiler Pipeline layer handles the lower-level parsing, symbol analysis
and metadata processing including the bindings and IL emitting. The Com-
piler API layer offers access to AST representation of the processed data
and functions as a higher level abstraction for C# or Visual Basic develop-

12

3. Roslyn 13

Figure 3.1: Roslyn API layers [Mic15]

ers. The Language Service layer provides a higher-level tool set to operate
on the Compiler API data including navigational operations, information
and formatting possibilities.

3.1.1 Compiler Pipeline

The Compiler Pipeline processes the input source in different phases, start-
ing with the parsing process, where the source is tokenized into the cor-
responding grammar language rules. Afterwards the metadata is analyzed
to extract the required symbols, also called declaration phase. The Binder
matches the symbols to the corresponding identifiers and at the end the
Emitter builds a complete assembly.

3.1.2 Compiler API

In equivalence to the previously described phases of the Compiler Pipeline
the Compiler API offers a representative object model in the current target
language to access the necessary information. The Parser phase represen-
tation is translated by the Syntax Tree API as AST model, followed by
metadata models for the symbols and bindings, and the Emit API abstracts
from the corresponding IL byte code producer.

3.1.3 Language Service

The Language Service adapts to the underlaying layers and phases. For in-
stance it uses the symbol table for the Object Browser or navigation features,
and the syntax tree representation for outlining and formatting features.

3. Roslyn 14

3.2 API
Roslyn is built as a two layer API set, the compiler API layer and the
workspace API layer. The compiler layer contains the object models con-
sisting of the extracted information about the individual phases and the
syntactic and semantic data parsed from the source. It offers an immutable
snapshot of a single invocation of a compiler. This layer is independent from
any Visual Studio components. This allows user-defined diagnostic tools to
connect to the actual compilation process for error and warnings informa-
tion. The workspace API resolves project dependencies and uses the com-
piler layer to provide object models for analysis and refactoring solutions
[Mic15].

3.3 Syntax Tree
The Syntax Tree API is the core component of the Roslyn framework. It
binds all the provided features to the abstract object model classes, known
as the AST . Code analysis, refactoring, IDE components, source infor-
mation, grammatical constructs and many more features converge to one
point, which is the Syntax Tree API. It is also important to know that
all parsed output can be reverted into its original source text (completely
round-trippable). Furthermore the syntax tree is thread-safe and immutable,
which allows multiple users to interact concurrently without interfering or
ending up in any race conditions. This also means that no modifications
can be submitted on the syntax trees. Factory methods provide additional
snapshots of the syntax tree to operate indirectly with them, to the cost of
little memory overhead (see also section Immutable Syntax Tree 5.4).
To illustrate the main components and features of the Syntax Tree API
the following Hello World program written in C# will serve as a practical
illustration.

using System;
namespace Demo {

class Program {
static void Main() {

Console.WriteLine("Hello World!");
}

}
}

Roslyn also provides possibilities to visualize existing code sections as syn-
tax tree using the .NET Compiler Platform SDK, which is available as a
NuGet package for Visual Studio. After installing the additional package,
Visual Studio adds a new menu item in the View / Other Windows / Syn-
tax Visualizer tab. The Syntax Visualizer creates the following syntax tree
output from the previously shown code as shown in Figure 3.2.

3. Roslyn 15

Figure 3.2: Hello World syntax tree components

Figure 3.3: Hello World visualized syntax tree

It is also possible to view a visual representation of the syntax tree as shown
in figure 3.3. The legend on the right hand side of figure 3.3 provides an
overview of the syntax tree elements resulting from a parsing procedure.
Each Roslyn syntax tree consists of the following elements:
Syntax Nodes for declarations, statements, clauses and expressions (Syn-

taxNodes, see Figure 3.3)
Syntax Tokens to represent terminals, the smallest fragments of code (Syn-

taxTokens, see Figure 3.3)
Syntax Trivia for whitespaces, comments and preprocessor directives, which

are the insignificant code elements that can be skipped after parsing
(Leading SyntaxTrivia and Trailing SyntaxTrivia, see Figure 3.3)

Spans for the text positioning and number of characters used by a node,
token or trivia (Missing / Zero-Width, see Figure 3.3)

Kinds to identify the exact syntax element corresponding, which can be
cast to language-specific enumerations

Errors for syntax, which is not grammar conform (Bad / Skipped, see Fig-

3. Roslyn 16

ure 3.3 on the preceding page) and
additional diagnostic elements can be attached for development or de-

bugging (Has Diagnostics, see Figure 3.3 on the previous page)

3.3.1 Syntax Nodes

The main Syntax Node types are derived from the SyntaxNode base class.
The set of Syntax Nodes is not extensible. These classes form the construct
to create declarations, statements, clauses and expressions. They are non-
terminal, which means they have sub-nodes that can be navigated through
typed Properties or methods.

/* tree is given after parsing the Hello World example with the
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxTree.ParseText method */

var syntaxRoot = tree.GetRoot();
var Demo = syntaxRoot.DescendantNodes().OfType<ClassDeclarationSyntax>()

.First();

3.3.2 Syntax Tokens

The Syntax Tokens are terminals and cannot be parents of other nodes or
token types. They represent identifiers, keywords, literals and punctuations.
It offers Properties to access the values parsed from the source input.

3.3.3 Syntax Trivia

Syntax Trivia represent insignificant text portions, which can occur as whites-
paces, comments and preprocessor directives at any position within the
source input. They are not part of normal language syntax and will not
be added as children of Syntax Nodes. They also do not have a parent node.
The Syntax Trivia base class is called SyntaxTrivia.

3.3.4 Spans

The nodes, tokens and trivias contain Spans for the positioning and number
of character occurrences to associate the correct location from the source
input. This may be used for debugging or error information determination.

3.3.5 Kinds

Kinds are used as properties for nodes, tokens and trivias to distinguish the
corresponding types and provide the correct conversions. The SyntaxKind
class can be represented as an enumeration type in the target language C#

or VB.

3. Roslyn 17

3.3.6 Errors

When parsing the source input, errors may occur, which can be located and
marked as wrong or incomplete, e. g. a token is missing or is invalid. The
parser can skip invalid tokens and continue to seek for the next valid token
to continue parsing. Skipped tokens will be attached as Trivia Node of Kind
SkippedToken.

3.4 Using the Roslyn API
Roslyn provides a rich API to create AST compilation units by code. It
uses the factory pattern and provides many static classes and methods or
enums, which can be used via chaining to build these solutions. Chaining is
a fluent method call design used in object-oriented programming languages,
whereas each method returns an object, allowing to call the next statement
without requiring variables storing the intermediate results. The following
code snipped shows an example how to use the Roslyn API to make a simple
class declaration.

var tree = SyntaxFactory.CompilationUnit().AddMembers(
SyntaxFactory.NamespaceDeclaration(

SyntaxFactory.IdentifierName("Example")).AddMembers(
SyntaxFactory.ClassDeclaration("Demo").AddMembers(

SyntaxFactory.MethodDeclaration(
SyntaxFactory.PredefinedType(

SyntaxFactory.Token(SyntaxKind.VoidKeyword)), "Main")
.AddModifiers(SyntaxFactory.Token(SyntaxKind.StaticKeyword))
.AddModifiers(SyntaxFactory.Token(SyntaxKind.PublicKeyword))
.WithBody(SyntaxFactory.Block()).AddBodyStatements(

SyntaxFactory.ReturnStatement())
)

)
);

3.5 Semantics
Although the Syntax Tree representation of the source input is offering many
features, it is only analyzing the lexical and syntactic structures. To fully
cover all the aspects of programming languages it is also necessary to de-
fine their semantics, which mark their behavior. Designations of local and
member variables can overlap each other and differ between their scopes and
actions rules have to be embedded within those closures. To do so, Roslyn
uses symbols. A symbol represents an element, which carries metadata re-
ceived from the source input. These can be accessed via the provided symbol
table also represented in a tree structure, starting from the root element,
which is the global namespace. The symbols are derived from the ISymbol

3. Roslyn 18

interface, whereas the Properties and methods are provided by the compiler.
The symbols offer namespaces, types and members between source code and
the metadata and their language concepts are similar to the Reflection API
used by the CLR type system. It is also important to know that the access
to the semantic model tree triggers a compilation, which means it is costlier
in comparison to the syntax tree access.
Every symbol contains information about

• the location of the declaration (in source or in metadata)
• in which namespace or type this symbol exists
• the information if the symbol is abstract, static, sealed, etc.

The following code snippet shows how to add semantics information to the
previously declared Hello World example.

/* tree is given after parsing the Hello World example with the
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxTree.ParseText method */

var mscorlib = MetadataReference.CreateFromFile(typeof(object).Assembly.
Location);

var compilation = CSharpCompilation.Create("DemoCompilation",
syntaxTrees: new[] { tree }, references: new[] { mscorlib });

var model = compilation.GetSemanticModel(tree);

3.6 Conclusion
Roslyn is a rich compiler service platform which enables deep access to
Microsoft’s .NET framework and its supported language sub-sets. Although
Roslyn offers a variety of low-level possibilities to building AST , it nicely
abstracts from these layers and supplies a clean and intuitive API .
The next chapter 4 will show how to declare and use ATG in foresight to
integrate new languages to the .NET framework.

Chapter 4

Attributed Grammar

Attributed grammars describe the syntactic and semantic rules for any given
programming language, which have to be fulfilled to ensure correctness in
execution of the source code. The rules declared within the grammar files
are used by compiler generators to provide the necessary parsers and lexical
analyzers that will scan the source input and create the semantically speci-
fied output. The output values can have binary, text or even other language
compliant formats.
This chapter will cover conform LL(1) grammar files, which will be used
for the development of XCompilR to embed a CLR non-compliant language
into the .NET framework by transforming the Coco/R AST to a Roslyn
conform AST [Prü13].
Coco/R has been developed by the Johannes Kepler University Linz (Aus-
tria). The Coco/R compiler generator is distributed under the GNU General
Public License and comes with a executable file available for the Windows
platform. It also offers an ATG file describing itself for the C# language,
which then can be used to generate C# parser and scanner sources. This
means it is possible to adapt the compiler generator grammar template to
even customize the generated compiler compiler.
For this thesis the compiler generator templates of Coco/R have been mod-
ified to integrate the resulting Parser and Scanner class into the XCompilR
solution. The mentioned Coco/R generator templates have a .frame exten-
sion and describe the static text regions of the generated output. The text
region for the Parser- and Scanner-class have been extended to derive from
abstract defined classes of XCompilR, which then can be instantiated by
Reflection at runtime and type-casted to an accessible type.

4.1 Coco/R
The development of Coco/R started in the early 80s. Since then the compiler
generator has found wide application all over the globe and has been ported

19

4. Attributed Grammar 20

Figure 4.1: Structure of a Compiler (blue lines represent the data flow,
black line represent the usages) [JKU15]

to many known programming languages [Han03]. Figure 4.1 provides an
overview of how the compiler is structured.
The Scanner processes the source text character by character and passes the
information to the Parser, which includes semantics information to gener-
ate the output code. To store information about the declarations and types
found within the source text, the Parser uses a symbol lookup table [Alf88].
The ATG used by Coco/R to generate the required parsers is declared in
EBNF notation and generates a recursive descent parsers [Set96]. Addi-
tionally to the EBNF notation Coco/R offers own description extensions to
separate logical parts, such as character, tokens, ignorable sequences and
the production notation for better readability. The used sections are:

• COMPILER and END (name of the ATG file the including start/end
enclosure)

• CHARACTERS (used to define basic digit and character sequences)
• TOKENS (used for creating basic token sequences by reusing the

CHARACTERS definition)
• PRAGMAS (used for writing preprocessor directives [optional])
• COMMENTS (used to define the comment character and their spans

behavior [optional])
• IGNORE (used to define character, which can be skipped during the

scanning procedure [optional])
• PRODUCTIONS (used for the EBNF notation with additional se-

mantics)
The semantic processing notation in Coco/R is clasped by an open paren-
thesis with a suffixed dot for the opening and a closed parenthesis with a
prefixed dot for the closing as shown below.

4. Attributed Grammar 21

...
PRODUCTIONS

Demo (. int n; .)
= { Expr<out n> (. Console.WriteLine(n); .)

...

Furthermore the Coco/R notation allows non-terminals to attach attributes
in angle brackets, which are used to pass arguments similar to parameters
of the symbols. To write helper classes and methods and import external
modules for the semantic statements. The compiler description also pro-
vides regions for using clauses [UsingClauses] and global fields and member
declarations [GlobalFieldsAndMethods]. The following illustration offers an
overview of the Coco/R EBNF structure.

[UsingClauses]
"COMPILER" ident
[GlobalFieldsAndMethods]
ScannerSpecification
ParserSpecification
"END" ident "."

The ScannerSpecification region contains the CHARACTERS, TOKENS,
PRAGMAS, COMMENTS and IGNORE statements, whereas the Parser-
Specification consists of the PRODUCTIONS statements.
The following code snipped illustrates a very simple, but complete Say Hello
ATG written for Coco/R. The source text committed to the generated com-
piler (Parser and Scanner) has to provide a constant say keyword followed
by any word, also including prefixed number sequences, starting with an
upper-case or lower-case character. The resulting output source text is call-
ing the C# Console class and printing the text Hello, <ident> to the console.

using static System.Console;

COMPILER SayHello

CHARACTERS
letter = 'A'..'Z' + 'a'..'z'.
digit = '0'..'9'.
cr = '\r'.
lf = '\n'.
tab = '\t'.

TOKENS
ident = letter {letter | digit}.

IGNORE cr + lf + tab

PRODUCTIONS
SayHello =
"say" (. Write("Hello, "); .)
ident (. Write(t.val + "\n"); .).

4. Attributed Grammar 22

END SayHello.

4.2 Conclusion
By writing LL(1) grammar with Coco/R it is possible to build parsers and
lexers to scan languages files and map their behavior by defining semantic
elements to create AST .
The next chapter 5 will cover how this thesis combines all the previously
described technologies to create a cross-language compiler for the .NET
framework.

Chapter 5

XCompilR

The XCompilR offers language interoperability by analyzing the source lan-
guages, building AST and applying the semantics, defined by the ATG files,
at runtime. The main language used by the XCompilR is C# although it
would be possible to also implement this framework in VB.

5.1 Problem of Language Interoperability
The conventional way of integrating languages into the .NET framework is to
fulfill the specified CLI contracts and write a compiler to convert the source
language into the required target IL code. This code is then executed by the
CLR. Writing IL code is a very low-level task and requires deep knowledge
about memory management, metadata bindings, assembly management, etc.
Roslyn already provides a good abstraction to this low-level subset, but
offers only services for the C# and VB languages due to their compiler
reimplementation atop of Roslyn. To add new languages at design or compile
time via Roslyn is a lot of manual work and tightly connected to the C# or
VB environment. This is a very inflexible way to incrementally adapt new
languages to the current .NET environment. On the other hand by using
Coco/R to create language parsers, which translate from a source language
to another target language, for instance IL code, it is hardly possible to
integrate the generated output into an existing development design-time
workflow. Classes have to be manually loaded via Reflection to access these
sources. The XCompilR solution resolves this problem by embedding the
compiler generator Coco/R into the project and creating a bridge between
Roslyn and the written ATG files. The user of this framework can write
LL(1) grammar for Coco/R to build a CompilationUnit for Roslyn without
tightly coupling to the C# or VB development environment.

23

5. XCompilR 24

5.2 Requirements
The XCompilR uses not only object-oriented paradigms, it also uses aspect-
oriented paradigms [Geo01] for exception handling and logging. This frame-
work uses PostSharp as a pattern-aware extension, to develop custom C#

Attributes and obtain the possibility to intercept the runtime execution at
different stages. Pattern-aware development focuses on code that can be
automated and encapsulates these code sequences in easy-to-use aspects.
They can be attached on methods, classes, properties, etc. This method
avoids code to becomes boilerplate and provides better separation between
the core logic of an implementation and the maintenance code. PostSharp
is available as a NuGet package.
To use the Roslyn framework, an additional download of packages via NuGet
(.NET Compiler Platform SDK) is also required.

5.3 Design
This framework requires to translate a Coco/R ATG to the Roslyn provided
AST . This resolve the bindings to integrate the compiled units into the .NET
framework and to be able to use external libraries from non-CLI compliant
languages. This requires three main parts:

• The first part is to embed Coco/R into the XCompilR framework to
trigger and handle the parsing procedures via C#. This requires mod-
ifications on the parser generator template to create externally visible
accessory methods. These methods will be used to generate the re-
quired target language Parser and Scanner.

• The second part is to create an ATG for the source language, which
uses the Roslyn API and matches terminals and non-terminals via se-
mantic actions. This creates a CompilationUnit which can be compiled
to .NET IL code via Roslyn. To dynamically extend the available CLI
non-compliant language-pool it is necessary to create a Visual Studio
extension. This extension loads new ATG files and triggers the Parser
and Scanner generation and provides code completion at design-time.
How to create the corresponding Visual Studio extension is not topic
of this thesis.

• The last part represents the object instantiation and binding creation,
which is available at design-time and during the execution. To ac-
cess the imported external language libraries for C#, extendable place-
holder classes have to be declared and attributed with the source code
path and the corresponding source language. The attributed class will
load the source code and create a CompilationUnit for the .NET frame-
work. At this point it is important to mention that Roslyn syntax trees
are immutable, which means that every adaption on the current tree

5. XCompilR 25

will result to a new SyntaxTree instance (the next subsection provides
a more detailed description about immutable syntax trees5.4).

5.4 Immutable Syntax Tree
In the early design phase of the Roslyn project the Roslyn team figured out
that syntax trees will be the most important parts for a user. Furthermore
multiple instances could concurrently analyze and even modify the parsed
syntax trees. Therefore they had to ensure that the provided data does not
become corrupted during these operations. The resulting design decision
concluded to ensure the following characteristics:

• Immutability
• Persistence
• Form and accessibility of the tree
• Low performance costs when accessing child nodes
• Offset positioning possibility between trees and input text

The most important characteristics are immutability and persistence. Roslyn
performs analysis at every user keystroke or received data input. To avoid
multiple re-parsing and analyzing cycles, a previously parsed syntax tree
does not change its shape or properties. Instead of rebuilding the entire tree
when modifying existing nodes, a new tree is created which is a copy of the
previous one including the new changes. More precisely the implementation
of Roslyn uses two parse trees. Whereas one is built bottom-up, persistent,
immutable and has no parent references and the other is top-down built
around the first tree. The second one is an immutable facade, which will
be thrown away during modifications. The tradeoff by this design are the
higher memory costs if the secondary mentioned tree becomes to large.
In practical terms of use, adding a single node to an existing tree will create
a new CompilationUnit instance as shown below.

var compilation = SyntaxFactory.CompilationUnit();
/* This creates a new tree with the newly added class member; the

previous compilation instance is not affected */
compilation.AddMembers(SyntaxFactory.ClassDeclaration("Demo"));

The following code reassigns the new syntax tree after the modification.
var compilation = SyntaxFactory.CompilationUnit();
compilation = compilation.AddMembers(SyntaxFactory.ClassDeclaration("

Demo"));

5.5 Architecture
XCompilR has been developed in a test-driven way. Not only to be able to
test the given components, but also to focus on the usability key points and

5. XCompilR 26

avoid unnecessary object construction chaining. The main idea is that the
object instantiation should only require minimal user effort. To achieve this
goal, XCompilR uses aspect-oriented concepts [Iva04]. The user of the frame-
work only needs to declare a new placeholder class and assign C# Attributes
and define the target compilation properties. The library required for at-
tributing the classes and to control the parsing process is available in the
XCompilR.Core assembly. In order to be able to handle multiple languages
it is required to control the parsing procedure by code, which concludes to
embed the Coco/R parser generator into the existing project structure. The
parser generator translates the ATG files and provides the required parsers
to process the new language related input sources. To enable the possibility
to replace the parser generator and abstract from proprietary code, Coco/R
has been placed in a separate assembly (XCompilR.ParserGen.CocoR) and
the access is defined via an interface and loaded via Reflection. This offers
higher flexibility for class extensibility and separates the code generation
unit from the logical core unit.
This results to the following design as shown in figure 5.1 on the next page.
XCompilR is structured in six main assemblies:

• XCompilR.Core
• XCompilR.Library
• XCompilR.ParserGen.Library
• XCompilR.ParserGen.CocoR
• XCompilR.IntelliSense
• XCompilR.Tests

XCompilR.Core is the primary library, which is used by developers building
on top of the XCompilR framework. It contains the XCompileAttribute class
used to declare the placeholder classes for the bindings. XCompilR.Library
defines abstract classes to ensure loose coupling between the generated
parsers form the ATG files for the language translation and the core library
usage. The generated assemblies (for example to parse JavaScript, Perl or
Python sources) implement the abstract classes from the XCompilR.Library
library. The Coco/R (XCompilR.ParserGen.CocoR) implementation inher-
its from abstract classes defined in the XCompilR.ParserGen.Library library.
The XCompilR.IntelliSense solution offers a Visual Studio extension and
provides the loading and unloading of available languages, created from
ATG files, which can be used by the core library. The implementation of
Visual Studio extensions will not be covered by this thesis. The generated
libraries are precompiled and statically available for the XCompilR.Tests
library. XCompilR.Tests is used for unit testing of the framework.

5. XCompilR 27

Figure 5.1: XCompilR project structure

5.6 Implementation
In order to bind the import external languages via Attributes it is required to
write a custom class handling the object instantiation process. The XCom-
pileAttribute class marks the placeholder classes as the binding targets and
receives parameters declaring the source language, target assembly naming,
target namespace and target main class entrance point (if available). As
an outcome of this design the following code shows an example how the
XCompileAttribute is used:

[XCompile("XCompilR.JavaScript", "test.js", TargetMainClass = "Demo",
TargetNamespace = "Test")]

public class DemoBinding : XCompileObject { }

5. XCompilR 28

In addition to the declared XCompileAttribute it is necessary to inherit from
the XCompileObject, which is the base class for all imported language bind-
ings. Furthermore the XCompileObject triggers the object creation at run-
time, which loads the external language sources and binds them to the cur-
rent class instance. The created XCompileObject is a dynamic object allow-
ing to dynamically assign member declarations and assignments at runtime,
which bypass the compile-time type checking (see dynamic objects in the
following subsection 5.6.1.
A positive side effect of the XCompileAttribute annotation is that it enables
the possibility to create a Visual Studio IntelliSense extension, searching for
the declared Attributes and triggering precompilation cycles to offer code
completion at design-time.

5.6.1 Dynamic Objects

In C# 4.0 the dynamic keyword was introduced and enables the declaration
and assignment of members of any given type at runtime without the neces-
sity to cast between reassigned value types. The declared members bypass
the compile-time type checking and the dynamic objects offer a flexible way
to declare members similar to the JavaScript var keyword. This provides a
simplified access to COM APIs, dynamic APIs such as IronPython, HTML
DOM , etc. The following example illustrates the dynamic assignment us-
ing an ExpandoObject instance (ExpandoObject represents a simple object,
whereas members can be added and removed at runtime).

dynamic sample = new ExpandoObject();
/* Test is not a provided member of ExpandoObject, it is dynamically

declared and assigned */
sample.Test = 10;
sample.Test = "Hello, world!";
Console.WriteLine(sample.Test);
sample.Test = (Action)(() => { Console.WriteLine("Hello again"); })
sample.Test(); /* Prints out Hello again to the console. */

The XCompilR framework uses dynamic objects for lazy loading bindings
between the non CLI compliant languages and the current instances cre-
ated by the user. Because ExpandoObject is a sealed class which cannot be
inherited, XCompilR uses another class (DynamicObject) to customize the
required constructor and properties for the bindings. The base class for all
bindings in XCompilR is called XCompileObject, which is an abstract class
and inherits from DynamicObject. XCompileObject provides a no-argument
constructor verifying the attribute assignment of the derived class and calling
the BindMembers method of the XCompileAttribute to perform the language
translation.

protected XCompileObject() {
/* Verify if the XCompileAttribute is available. */

5. XCompilR 29

var attributeArray = (XCompileAttribute[])GetType().
GetCustomAttributes(typeof(XCompileAttribute), false);

if (attributeArray.Length != 1) {
throw new XCompileException("Invalid attribute notation on target
class!");

}
/* Commit this object for binding. */
attributeArray[0].BindMembers(this);

}

5.6.2 XCompileAttribute

This Attribute loads the supported languages and calls the parsing procedure
to process the committed source file and binds the members to the XCom-
pileObject. To fulfill this task it inherits from the C# Attribute base class
and declares the contract related attributes. To create custom attributes in
C# it is required to declare the class as Serializable. To prevent inappropri-
ate usage of this attribute the AttributeUsage declaration restricts the usage
only for classes and the ContractClass attribute request, that only classes
typed as XCompileObject are allowed to be signed with this attribute.

[Serializable]
[AttributeUsage(AttributeTargets.Class)]
[ContractClass(typeof(XCompileObject))]
public class XCompileAttribute : Attribute

The constructor of the XCompileAttribute receives the user defined values
and loads the required parser assembly for the ongoing computation via
reflection.

public XCompileAttribute(string bindingLanguageAssembly, string
sourceFile) {

/* Load import language assembly via reflection. */
Assembly assembly = Assembly.Load(bindingLanguageAssembly);
Type type = assembly.GetType($"{bindingLanguageAssembly}.

BindingLanguage");
Language = (ABindingLanguage)Activator.CreateInstance(type);
_sourceFile = sourceFile;
/* Verify committed values. */
if (TargetNamespace == null || TargetNamespace.Equals(string.Empty))

TargetNamespace = bindingLanguageAssembly;
if (_sourceFile == null || _sourceFile.Equals(string.Empty))

throw new XCompileException("Invalid source file path!");
}

The ABindingLanguage abstract class has all the required properties to be
able to load the parsers.
The BindMembers method is assigned with the XCompilRExceptionHandler
attribute which handles the exceptions that can occur during the computa-
tion (the exception handling will be covered more detailed in the following
section Exception handling and logging 5.6.4).

5. XCompilR 30

[XCompilRExceptionHandler(typeof(XCompileException))]
public void BindMembers(dynamic bindingObj)

The main task of this method is to initialize the parser with the dynamic
object for the bindings and trigger the parsing process. Afterwards it builds
an assembly containing the new imported library information and attaches
these properties to the current dynamic object instance.
The following example illustrates the parser initialization and usage.

var parser = Language.Parser;
parser.BindingObject = bindingObj;
parser.Parse(_sourceFile);

Every provided parser for the supported languages is derived from an ab-
stract class AParser (see section Parser 5.6.3) and contains a Compilatio-
nUnitSyntax (covered in chapter Roslyn 3) property and the instance of the
currently processed dynamic object. The resulting outcome of a successful
parsing procedure is a fully qualified Roslyn AST , which can be used for
the assembly generation. To create an assembly it is first required to use the
CSharpCompilation.Create method to create a CSharpCompilation object
from the CompilationUnitSyntax.SyntaxTree property and afterwards emit
and load the data stream from the memory.

/* Creates a dll compilation from the syntax tree received from the
parser and adds references at runtime including metadata references
of System library. */

var mscorlib = MetadataReference.CreateFromFile(
typeof(object).Assembly.Location);

var compilation = CSharpCompilation.Create(
$"{TargetMainClass}.dll",
references: new[] { mscorlib },
syntaxTrees: new[] { parser.CompilationUnitSyntax.SyntaxTree });

compilation.GetSemanticModel(
parser.CompilationUnitSyntax.SyntaxTree, false);

/* The compiled code is emitted into memory stream which is used to
create a assembly at runtime. */

Assembly assembly;
using (var stream = new MemoryStream()) {

compilation.Emit(stream);
assembly = Assembly.Load(stream.GetBuffer());

}

Finally the new assemblies are bound to the dynamic object instance and in-
clude representative helper methods for the object creation. The type casting
can be performed via reflection and by using the attached assembly.

bindingObj.Add(Language.AssemblyName, assembly);
bindingObj.Add($"CreateInstanceOf{TargetMainClass}",

new Func<object>(() =>
assembly.CreateInstance($"{TargetNamespace}.{TargetMainClass}")));

The get an overview of the entire object instantiation sequence see figure 5.2
on the following page.

5. XCompilR 31

Figure 5.2: Object creation illustration

5.6.3 Parser

In order to be able to cross-compile multiple languages with XCompilR it
is required to use a parser generator, such as Coco/R. The parser generator
compiles the language specific parsers from the ATG files and builds as-
semblies that can be used by the XCompileAttribute. XCompilR is foreseen

5. XCompilR 32

to be used in combination with a Visual Studio extension, which manages
the loading and unloading of ATG files. It also triggers the Coco/R em-
bedded implementation (XCompilR.ParserGen.CocoR) to provide the nec-
essary assemblies. The implementation of an Visual Studio extension is not
topic of this thesis and will be assumed. Every supported compiler gen-
erator must inherit from the interface IParserGen included in the XCom-
pilR.ParserGen.Library library. To be able to load the parser generator at
runtime via Reflection the abstract class ABindingParserGen is used, in-
cluding the metadata information for each parser generator.

[Serializable]
public abstract class ABindingParserGen {

public abstract string ParserName { get; }
public abstract string AssemblyName { get; }
public abstract IParserGen Parser { get; }

}

The following code shows the IParserGen interface implemented in the
XCompilR.ParserGen.CocoR assembly:

public interface IParserGen {
AParser CreateParser(string grammarFile);
Assembly GenerateAssembly(string grammarFile);

}

Parser Generator (Coco/R)

The Coco/R source classes are provided by the University of Linz and are in-
cluded within a sub-package (JKU.Coco) of the XCompilR.ParserGen.CocoR
library. The CocoParserGen class implements the CreateParser method of
the IParserGen interface and creates the parsers from the committed ATG
files.
Occurring exceptions are handled via the XCompilRExceptionHandler at-
tribute described in the subsection Exception handling and logging 5.6.4.
The parser generator also provides a method to load previously generated
parsers from an ATG file. The following code snipped illustrates the instan-
tiation of a parser generated from an ATG file.

[LogException]
[XCompilRExceptionHandler(typeof(XCompileException))]
public AParser CreateParser(string srcName) {

try {
/* Load available assembly. */
string nsName = $"XCompilR.{srcName.Split('.')[0]}";
Assembly assembly = LoadAssembly(srcName, nsName);

/* Create and initialize Parser and Scanner. */
Type type = assembly.GetType(nsName + ".Scanner");
var s = (AScanner)Activator.CreateInstance(type);
type = assembly.GetType(nsName + ".Parser");

5. XCompilR 33

var p = (AParser)Activator.CreateInstance(type);
p.InitParser(s);
return p;

} catch (Exception exception) {
throw new XCompileException(

"Could not generate Parser and Scanner from grammar file!",
exception);

}
}

Generated ATG parsers

All generated parser assemblies include a Parser and a Scanner class, de-
rived from the abstract classes AParser and AScanner. The following ab-
stract methods define the AParser contract which has to be fulfilled to
implement a valid language parser:

public abstract void InitParser(AScanner scanner);
public abstract void ReInitParser();
public abstract void Parse(string fileName);

Furthermore the implementation of the AParser class has two properties
provided to build the CompilationUnitSyntax object required for Roslyn
and to attach members to the dynamic binding object.

public dynamic BindingObject { get; set; }
public CompilationUnitSyntax CompilationUnitSyntax { get; set; }

The implemented scanners have to define the following abstract methods,
which are used by the parsers:

public abstract AScanner Scan(string fileName);
public abstract AScanner Scan(Stream stream);

Creating ATG files

To generate a language parser it is required to write an ATG file. The writ-
ten ATG files have access to the CompilationUnitSyntax and BindingObject
property which are used to build the syntax tree and to bind members to the
dynamic object. The sample below shows how to attach semantic elements
to an ATG file to create a Roslyn AST .

...
Sample = (. CompilationUnitSyntax =

SyntaxFactory.CompilationUnit();
string name; .)

"class"
Ident<out name> (. CompilationUnitSyntax =

CompilationUnitSyntax.AddMembers(
SyntaxFactory.ClassDeclaration(name); .)

"{"
...

5. XCompilR 34

The Ident non-terminal contains an out parameter initialized by the lexer
(Scanner) during the recursive descent and offers the name of the class. The
CompilationUnitSyntax.AddMembers method adds a new class declaration
to the current compilation node. It is important to recall that Roslyn syntax
trees are immutable objects and that all performed changes on an existing
node create a new syntax tree object. This requires reassignment of existing
instances during the modifications in the semantic elements.

5.6.4 Exception handling and logging

XCompilR uses an aspect-oriented way of handling exceptions and logging
at runtime. To simplify the creation of aspects and to use logging attributes
the PostSharp framework has been included. PostSharp supports multiple
logging frameworks such as NLog or log4net and enables simple usage of Log
or LogException attribute aspects. These can be declared on methods or
classes and will be triggered depending on the preset configurations at the
entrance and/or exit of the denoted methods or on exception occurrences.
The general XCompilR exception class is XCompileException. It can occur
during language parser generation or language source file parsing.
A C# attribute declaration is required to handle the XCompileException
exception. The defined attribute is declared as shown below:

[Serializable]
[AttributeUsage(AttributeTargets.Method)]
public sealed class XCompilRExceptionHandlerAttribute :

OnExceptionAspect

OnExceptionAspect is a class defined in the PostSharp framework and offers
methods which can intercept at different phases on an exception occur-
rence. These methods have the ability to steer the flow control of a method
by offering meta-level information. The following snippet shows how the
OnException method can set the flow control to return regularly although
an exception has been thrown:

[Log]
public override void OnException(MethodExecutionArgs args) {

if (_exceptionType == typeof(XCompileException)) {
/* Set the method behavior after an exception occurred. */
args.FlowBehavior = FlowBehavior.Return;

/* Print the exception stacktrace to the console. */
Console.WriteLine(args.Exception.StackTrace);

/* TODO further exception handling. */
}

}

All the methods marked with the XCompilRExceptionHandler attribute will
be intercepted and the OnException method is called before the general ex-

5. XCompilR 35

ception flow behavior is triggered. Furthermore any call of the OnException
method will be logged due to the Log attribute assigned.

5.7 Evaluation
The XCompilR framework offers simple ways to bind external sources to
an existing C# project environment, which allows reuse of legacy code and
interoperability. Although it seems very beneficial to embed new languages
into the .NET framework by translating existing sources over Roslyn syn-
tax trees and binding them to dynamic objects at runtime, there is still a
negative tradeoff that has to be mentioned. These processes are performed
at runtime, so they afford very high computational efforts during the pars-
ing procedure. Depending on the imported sources the memory footprint can
also be extremely high. For instance if a cross-compilation is performed with
the Java programming language and the referenced sources use many Java
framework related classes, then all these sources have to be loaded, scanned,
parsed and bound to an object instance. This would mean a translation
of hundreds of Java classes, which can result to very unpleasant runtime
performances.
Furthermore, the current version of the XCompilR does not efficiently han-
dle multiple occurring library references of translated languages, meaning
that two or more unrelated CLI non-compliant libraries of the same pro-
gramming language referencing to a shared resource, will still create multiple
instances of the same shared resource under different namespaces. This can
dramatically increase the requirements of the memory usage.
Another key point is that the translated libraries are only one-way available
and operable. It is only possible to import language sources into a C# or VB
environment to perform operations on behalf of them, but it is not possible
to access from the internals of these sources .NET environment instances or
the instances using them.
The framework also lacks the possibility to generate and manage the avail-
able assemblies for the language parsing. A managing instance — such as
a Visual Studio extension — is required to offer loading and unloading of
ATG files used for the language parsing and offering code completion for
the imported sources at design-time.
But looking at the results from an conceptual point of view, the XCompilR
fully fulfills the requirements. The framework fully supports all currently
available programming languages after providing a ATG to building the re-
quired Roslyn AST . This enriches the C# and VB programming language for
interoperability and enables a simplified migration process from a previously
used programming language to the .NET environment.
Chapter 6 reviews and offers conclusions gained of this thesis.

Chapter 6

Conclusion

This thesis covered the importance of cross-language compilation based on
the .NET framework. It mentioned the importance of nowadays language
interoperability and covered the idea and internals of the CLI fulfilling this
task. In addition it also gave an overview of terms related to the .NET
framework and how their interactions are linked together. On top of these
fundamentals the new Microsoft .NET Compiler Platform (Roslyn) was in-
troduced and the key points were explained. This included the internal me-
chanics of the Roslyn framework, its API , the usage of syntax trees and
important terms required to build ASTs. Related to the terms of ASTs the
parser generator Coco/R was illustrated and how to create ATG files to
generate lexers and parsers, which are used to compile multiple language
sources.
Furthermore the chapter containing the XCompilR design, architecture and
implementation was discussed. It included cross references to the previous
defined topics and explained how to apply cross-language compilation us-
ing Coco/R, Roslyn, aspect-oriented concepts and dynamic objects for the
instance bindings [Let12].
Although the implementation is only in prototype phase for the proof of con-
cept, the created framework is still available under the GNU General Public
License due to its great results. XCompilR offers a very easy and flexible
way to integrate non-CLI compliant languages into the .NET framework
without having to access lower-level implementation layers. It is possible to
fork or contribute to the current version on GitHub (https://github.com/
Xpitfire/CrossCompile).

6.1 Future Work
The realized framework prototype is fully functional and offers the possibility
to import multiple language sources into the .NET framework. But there
are still many questions unanswered and analysis that can be performed to

36

https://github.com/Xpitfire/CrossCompile
https://github.com/Xpitfire/CrossCompile

6. Conclusion 37

denoted this framework as complete.

6.1.1 Syntax tree building helpers

The generated language parsers offer multiple ways to bind the sources to a
customer defined dynamic object instance via the defined AParser abstract
class contract. Due to the immutable design of the Roslyn syntax trees it is
still quite complicated to write ATG files mapping the source language to
the dynamic language instances. To ease the work of the ATG developer,
the AParser class must be extended and offer multiple helper methods and
properties in order to select and exchange nodes, which can be used in the
semantic actions of the ATG files.

6.1.2 Code completion for ATG files

When developing an ATG file, it is necessary to use the dynamic object
(BindingObject) instance for the bindings and the CompilationUnitSyntac
instance for the AST creation. When creating these files, no syntax high-
lighting, code completion or type checking is available. This can easily result
to typos or misuse of declared syntax nodes. To create a rich development
environment a customized editor is required, which provides the Roslyn API
classes and verifies the assigned semantic actions.

6.1.3 Visual Studio Extension

To manage the languages available for the XCompilR and to trigger the
parsing procedures, when loading a new ATG file, a Visual Studio extension
would be required. This extension could also provide an editor for creating
new ATG files including the necessary syntax highlighting, code completion
for Roslyn and type checking for semantic actions.

6.1.4 Performance improvements

Because the current stage of the framework was foreseen as a prove of con-
cept and marked as experimental, there are still many performance im-
provements and testing procedures available. For instance, a release version
of the cross-language translation framework would have to handle multiple
occurring shared resources. It should detect that there are already existing
resource instances loaded and share this objects to newly imported resources
to avoid unnecessary reparsing cycles. Furthermore it has to improve the syn-
tax tree building and cache often occurring instances. All these key points
would improve the overall performance at runtime.

6. Conclusion 38

6.2 Experiences
Writing this thesis was a very challenging task for me. It required a very
sophisticated knowledge base about the internals of the .NET framework,
multiple APIs, framework related structures and design paradigms and the
functionality of compilers, which also represented one of the most time con-
suming tasks. It was also interesting to find out that even huge companies
such as Microsoft do not always document all their sources and sometimes
lack design guidelines. Also when using frameworks such as PostSharp it
is important to be aware of licensing and sometimes think twice before in-
tegrating them into newly developed projects. Problems can occur when
developers require more from a framework than usually expected. This can
become very expensive, when trying to remove wrongly chosen frameworks
in an late project phase. The framework decisions established at the begin-
ning of a project may influence an entire design and architecture. Afterwards
the hardest part was to combine all of these topics into a unified functional
set.
A few months ago I had no profound idea about the practical usage of syntax
trees, parser generators or the core mechanics of the .NET framework, but
finally I managed to gain all the required information and was able to apply
them to this thesis. Great thanks are also directed to my professors which
guided me into the right direction and offered me many code samples, papers
and sources for researching. So I could crack the code and was able to create
the XCompilR project. Of course, I have to admit, that I still have many
areas of deficits and that I am continuously trying to improve my skills, but
at this point I want to emphasize that it was a great pleasure to learn about
the declared topics and to create this work. In addition to the technical
terms I was also able to improve my time management and organizational
skills during the development and the writing phase.

References

Literature
[Alf88] Jeffrey D. Ullman Alfred V. Aho Ravi Sethi. Compilerbau Teil 1.

Deutschland: Addison-Wesley, 1988 (cit. on p. 20).
[Ecm12] Ecma. Common Language Infrastructure (CLI) – Partitions I to

VI. Tech. rep. Geneva: Ecma International, June 2012. url: http:
/ / www . ecma - international . org / publications / files / ECMA - ST /
ECMA-335.pdf (cit. on pp. 2, 7, 8).

[Geo01] William T. Councill George T. Heineman. Component-Based
Software Engineering – Putting the Pieces Together. United States
of America: Addison-Wesley, 2001 (cit. on p. 24).

[Han03] Markus Löberbauer Hanspeter Mössenböck Albrecht Wöß. “Der
Compilergenerator Coco/R”. In: Peter Rechenberg – Festschrift
zum 70. Geburtstag. Linz: Universitätsverlag Rudolf Trauner,
2003. Chap. 13, pp. 47–59 (cit. on p. 20).

[ISO15] ISO. Information technology — Web Services Interoperability. ISO
Online Browsing Platform (OBP). 2015. url: https://www.iso.
org/obp/ui/#iso:std:iso-iec:29361:ed-1:v1:en (cit. on p. 2).

[Iva04] Pan-Wei Ng Ivar Jacobson. Aspect-Oriented Software Develop-
ment with Use Cases. Boston: Addison-Wesley, 2004 (cit. on
p. 26).

[JKU15] JKU. Coco/R Tutorial. Johannes Kepler University of Linz Web-
site. 2015. url: http://www.ssw.uni- linz.ac.at/Coco/ (cit. on
p. 20).

[JNB15] JNBridge. JNBridge. JNBridge Website. 2015. url: http : / /
jnbridge.com/software (cit. on p. 2).

[Küh13] Andreas Kühnel. Visual C# 2012 – Das umfassende Handbuch.
6th ed. Bonn, DE: Galileo Press, 2013 (cit. on p. 5).

[Let12] Julian Lettner. “A Code Generation Pipeline for .NET”. Master-
arbeit. Hagenberg, Austria: University of Applied Sciences Upper
Austria, Software Engineering, Sept. 2012 (cit. on p. 36).

39

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:29361:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:29361:ed-1:v1:en
http://www.ssw.uni-linz.ac.at/Coco/
http://jnbridge.com/software
http://jnbridge.com/software

References 40

[Lin14] Serge Lindin. .NET IL Assembler. Apress, 2014 (cit. on p. 9).
[Mic15] Microsoft. .NET Compiler Platform ("Roslyn"). Microsoft Open

Technologies Website. 2015. url: https ://github . com/dotnet/
roslyn/wiki (cit. on pp. 2, 13, 14).

[Ora15] Oracle. Oracle Documentation. Oracle Website. 2015. url: http:
//docs.oracle.com/javase/7/docs/technotes/guides (cit. on pp. 1,
2).

[Prü13] Thomas Prückl. “Ein echter Pseudocode Compiler für .NET”.
Masterarbeit. Hagenberg, Austria: University of Applied Sciences
Upper Austria, Software Engineering, June 2013 (cit. on p. 19).

[Sch11] Raphael Schober. “Supporting Modern Programming Paradigms
via Code Transformations in the Common Language Infrastruc-
ture”. Diplomarbeit. Hagenberg, Austria: University of Applied
Sciences Upper Austria, Software Engineering, June 2011 (cit. on
p. 6).

[Set96] Ravi Sethi. Programming Languages – Concepts & Constructs.
2nd ed. Murray Hill, New Jersey: Addison-Wesley, 1996 (cit. on
p. 20).

[Wik15] Wikipedia. .NET Framework Stack Overview. Wikipedia Website.
2015. url: https ://upload .wikimedia .org/wikipedia/commons/
thumb/d/d3/DotNet.svg/2000px-DotNet.svg.png (cit. on p. 6).

https://github.com/dotnet/roslyn/wiki
https://github.com/dotnet/roslyn/wiki
http://docs.oracle.com/javase/7/docs/technotes/guides
http://docs.oracle.com/javase/7/docs/technotes/guides
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/DotNet.svg/2000px-DotNet.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/DotNet.svg/2000px-DotNet.svg.png

Acronyms

API Application Program Interface.
AST Abstract Syntax Tree.
ATG Attributed Grammar .
CIL Common Intermediate Language.
CLI Common Language Infrastructure.
CLR Common Language Runtime.
CLS Common Language Specification.
COM Component Object Model.
CTS Common Type System.
DOM Document Object Model.
EBNF Extended Backus–Naur Form.
GC Garbage Collection.
HTML Hyper Text Markup Language.
IDE Integrated Development Environment.
IL Intermediate Language.
ISO International Organization for Standardiza-

tion.
JNI Java Native Interface.
JVM Java Virtual Machine.
VB Visual Basic.
VES Virtual Execution System.

41

Glossary

Abstract Syntax Tree A tree representation of the syntactic source code
structure.

Attributed Grammar Formal grammar description of a specified program-
ming language with attached attributes, which are evaluated within
the AST nodes by a parser or compiler.

Coco/R Compiler Generator developed by the Johannes Kepler University
in Linz (Austria).

Common Intermediate Language Microsoft’s lowest-level human-readable
programming language based on the CLI .

Common Language Infrastructure An open specification developed by
Microsoft and standardized by the ISO.

Common Language Runtime Microsoft’s virtual machine component for
the .NET framework.

Common Language Specification Document describing how computer
programs can be turned into IL code.

Common Type System A standard for type and type value memory rep-
resentation within the .NET framework.

CompilationUnit Roslyn AST root class, representing a assembly solu-
tion.

Component Object Model Component Object Model Technology a Mi-
crosoft developed API for building and re-using software components,
Windows services used by Microsoft Office products, Direct Show, etc..

EcmaScript Alternative name for the JavaScript programming language.
Garbage Collection Automatic handling for memory management, which

can disposed unused objects from the heap.
GitHub Public git repository to commit, fork and contribute (open-source)

software solutions.
IntelliSense Visual Studio code completion technology.
Intermediate Language Microsoft’s lowest-level human-readable program-

ming language based on the CLI .
IronPython An open-source implementation of the Python programming

language integrated in the .NET framework.

42

Glossary 43

JNBridge Framework to bridge code usage between Java and .NET tech-
nologies.

Java Native Interface Java standard Programming interface for using
native written libraries in the JVM .

Java Virtual Machine Java Runtime Environment platform for execut-
ing Java code.

LL(1) grammar LL(1) grammar is used by so called LL parser, which
in this case has one token look-ahead for recognizing a committed
programming language.

NuGet Visual Studio package manager.
PostSharp Pattern-aware extension framework for C# and VB.
Reflection Framework abilities to examine and modify code structures and

behaviors at runtime by using metadata.
Roslyn Microsoft’s Compiler Platform.
VSIX Visual Studio deployment extension unit.
Virtual Execution System Runtime system based on the CLI .
XCompilR Prototype for cross compiling languages based on an ATG for

cross language interoperability, developed by Marius C. Dinu.

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

44

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background
	Motivation
	Scope
	Target
	Goal
	Structure

	.NET framework
	Common Language Infrastructure
	Common Type System
	Common Language Specification
	Metadata
	Common Intermediate Language
	Common Language Runtime
	Virtual Execution System

	Conclusion

	Roslyn
	Compiler-as-a-Service
	Compiler Pipeline
	Compiler API
	Language Service

	API
	Syntax Tree
	Syntax Nodes
	Syntax Tokens
	Syntax Trivia
	Spans
	Kinds
	Errors

	Using the Roslyn API
	Semantics
	Conclusion

	Attributed Grammar
	Coco/R
	Conclusion

	XCompilR
	Problem of Language Interoperability
	Requirements
	Design
	Immutable Syntax Tree
	Architecture
	Implementation
	Dynamic Objects
	XCompileAttribute
	Parser
	Exception handling and logging

	Evaluation

	Conclusion
	Future Work
	Syntax tree building helpers
	Code completion for ATG files
	Visual Studio Extension
	Performance improvements

	Experiences

	References
	Literature
	Acronym
	Glossary

